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Unified Low-rank Tensor Learning and Spectral
Embedding for Multi-view Subspace Clustering

Lele Fu, Zhaoliang Chen, Yongyong Chen, and Shiping Wang

Abstract—Multi-view subspace clustering aims to utilize the
comprehensive information of multi-source features to aggregate
data into multiple subspaces. Recently, low-rank tensor learn-
ing has been applied to multi-view subspace clustering, which
explores high-order correlations of multi-view data and has
achieved remarkable results. However, these existing methods
have certain limitations: 1) The learning processes of low-rank
tensor and label indicator matrix are independent. 2) Variable
contributions of different views to the consistent clustering
results are not discriminated. To handle these issues, we propose
a unified framework that integrates low-rank tensor learning
and spectral embedding (ULTLSE) for multi-view subspace
clustering. Specifically, the proposed model adopts the tensor
singular value decomposition (t-SVD) based tensor nuclear norm
to encode the low-rank property of the self-representation tensor,
and a label indicator matrix via spectral embedding is simultane-
ously exploited. To distinguish the importance of various views,
we learn a quantifiable weighting coefficient for each view. An
effective recursion optimization algorithm is also developed to
address the proposed model. Finally, we conduct comprehensive
experiments on eight real-world datasets with three categories.
The experimental results indicate that the proposed ULTLSE is
advanced over existing state-of-the-art clustering methods.

Index Terms—Multi-view subspace clustering, spectral embed-
ding, low-rank tensor, t-SVD.

I. INTRODUCTION

Subspace clustering [1], [2] intends to allocate data points
from various clusters into corresponding subspaces, and each
data point can be fitted with a linear combination of the
remaining sample points attributed to the same subspace. Due
to its encouraging performance, subspace clustering has been
applied in many fields such as data dimensionality reduction
[3] and pattern recognition [4]. In the past decades, multi-
view data has gradually boomed with the development of
multimedia technology. Intuitively, a view can be understood
as a feature representation of objects, while multi-view refers
to the representations of objects from multiple features. For
instance, an image can be characterized in terms of color,
texture, shape, etc. Therefore, fully inquiring into the in-
formation complementarity and consistency among multiple
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views is beneficial for more essential description of objects,
thus promoting the clustering effects. Conventional single-
view subspace clustering cannot efficiently handle multi-view
data, so abundant multi-view subspace clustering algorithms
emerge as the times require. What is more gratifying is that
multi-view clustering algorithms have served a large number
of application scenarios, including computer vision [5], [6],
[7], disease prediction [8], [9], [10], and natural language
processing [11], [12], [13].

Inspired by sparse subspace clustering (SSC) [14] and low-
rank representation (LRR) [15], extensive multi-view cluster-
ing methods based on self-representation subspace learning
are proposed. Luo et al. [16] explored both the specificity
and consistency of subspace representations. Zhang et al. [5]
learned the unique latent representation of multi-view data,
from which a subspace representation was exploited. Kang
et al. [17] chose a small amount of anchor samples to build
a subgraph for each view, then an efficient method was
proposed to integrate these subgraphs. Yang et al. [18] de-
signed a multiplicative decomposition scheme for maintaining
the structural consistency of all extracted constituents, which
promoted the performance of variable splitting scheme. These
above works have achieved the promising effects, but they all
mine the internal correlations among multiple views at the
matrix level. For multi-view data, it is more reasonable to
refine discriminative and consistent data representation from
the aspect of tensor.

Tensor-based multi-view subspace learning usually first
combines the representation matrix of each view into a 3-
order tensor, then it restores a low-rank tensor via a certain
tensor nuclear norm. Further, a linear fusion method is used
over the recovered low-rank tensor to obtain a consensus
affinity matrix, which is fed into the spectral algorithm to
yield clustering results. There are some representative tensor-
oriented multi-view subspace clustering methods. For instance,
Zhang et al. [19] adopted the sum of nuclear norms (SNN)
to encode a low-rank tensor space, where SNN refers to the
sum of the rank of each self-representation matrix. Xie et
al. [20] employed the t-SVD based tensor nuclear norm [21]
to minimize the rank of target tensor. Considering different
contributions of varying singular values, a weighted version
of t-SVD based tensor nuclear norm was developed in [22].
In addition to the application of self-representation in tensor-
oriented multi-view learning, some other construction manners
of affinity matrices have also been adopted. Wu et al. [23]
constructed transition probability matrices for all views, which
are assembled into an original tensor. Chen et al. [24] paid at-
tention to the nonlinear structures in multi-view data and used
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a kernel-induced mapping to obtain the data representation
of each view. Tensor-based methods have made new progress
in exploring the correlations between views, but most of them
still suffer from certain limitations: 1) The low-rank tensor and
label indicator matrix are separately learned, which overlooks
the dependence between them and may make it incapable to
gain the optimal solution of the latter. 2) The final affinity
matrix is obtained by linearly adding each slice of the low-rank
tensor such as in [19], [20], [22], [23], which is neither short
of interpretability nor consideration of the inherent differences
in views.

In this paper, we propose a unified framework for multi-
view subspace clustering that fuses low-rank tensor learning
and spectral embedding. In the proposed method, the original
tensor is constructed via reorganizing the self-representation
matrices of all views, which contain the potential correlations
of samples and is more robust than the similarity matrices
constructed by Gaussian kernel. Then the t-SVD based tensor
nuclear norm is used to characterize the low-rank properties
of the target tensor. When optimizing the low-rank tensor, a
low-dimensional label indicator matrix is learned via spectral
embedding, over which the k-means algorithm is run for ac-
quiring the data labels. Furthermore, data features at different
perspectives have different densities of semantic information,
which contribute to the final clustering results with varying
degrees, so we model this diversity via an adaptive weight
learning scheme. Fig. 1 shows the overall framework of the
proposed ULTLSE. Generally, the contributions of the present
study are summarized as follows:
• We propose a unified framework for dealing with the

multi-view subspace clustering problem, which integrates
the low-rank tensor learning and spectral embedding.
Thus, the dependence between the low-rank tensor and
label indicator matrix can be considered and utilized.

• We preserve the principal components of the self-
representation tensor through the t-SVD based tensor
nuclear norm. At the same time, each view has a spe-
cific measurement, which is quantified as a weighting
coefficient.

• The proposed ULTLSE is evaluated on eight real-world
datasets with three categories. The experimental results
indicate that ULTLSE outperforms other state-of-the-art
single-view and multi-view clustering methods.

The remaining sections of this paper are structured as
follows. In Section II, we briefly introduce related works
relevant to our method. The notations and preliminaries are
described in Section III. In Section IV, we elaborate upon
the proposed ULTLSE for multi-view subspace clustering.
Section V presents the experimental details. In Section VI, we
summarize the paper and highlight the future research plans.

II. RELATED WORK

A. Low-rank Analysis

For a matrix or a tensor, its low-rank parts contain the
principal data information and correlation information of
sample points. Since minimizing the rank of a matrix or
tensor is a non-convex problem hard to resolve, researchers

have found its optimal convex approximation, i.e., minimizing
their nuclear norm. At present, low-rank analysis [25], [26]
is widely researched and applied in data mining. For a few
examples, Liu et al. [15] was committed to solving a low-
rank representation matrix from the original feature matrix.
Chang et al. [27] proposed an approximate low-rank factorized
similarity learning approach incorporating affluent information
from various sources in network. Tang et al. [28] utilized
Tucker decomposition to complete the tri-clustered tensor
for social image tag refinement. Tang et al. [29] designed
a low-rank tensor learning method incorporating the anchor
graph technology to achieve image retagging. Wu et al. [30]
developed a low-rank kernelized hash functions optimization
manner to tackle corrupted data. Fu et al. [31] recovered an
essential representation tensor via low-rank approximation for
multi-view clustering and semi-supervised classification.

B. Embedding Representation Learning

Embedding representation learning is an efficient technique
for learning compact and discriminative data features, which
is crucial for downstream tasks such as pattern recognition,
vision processing, etc. Currently, there are two dominant
models for embedding representation learning: shallow models
and deep models. For example, Qi et al. [32] projected
cross-modal data information onto a unified embedding space
to capture the semantic correspondence. Hajjar et al. [33]
explored a common nonnegative embedding with orthogonal
constraints on the columns from multi-view data. Xie et al.
[34] learned a low-dimensional embedding space from original
data feature space, where the data were characterized by
high discriminative capacity. Wang et al. [35] aimed to mine
a unified subspace embedding representation from multiple
features, and explored the complementary information using a
diversity regularization. Cai et al. [36] enhanced the embed-
ding discrimination via simultaneously considering contractive
loss, clustering loss, and focal loss.

C. Multi-view Clustering

Multi-view clustering [37], [38], [39], [40] leverages the
comprehensive information accumulated in multi-view data
to cluster samples, and the acquisition of this information
depends on effective feature fusion [41], [42], [43], [44]. To
promote the clustering performance, researchers pay more and
more attention to developing new feature fusion technologies
and recovering the integrative data representation. Nowadays,
there are many kinds of multi-view clustering approaches.
Herein, we briefly review several major types of models.

Graph-based models are one of the most common models,
which attempt to refine a uniformity affinity matrix of multi-
view data. For instance, Nie et al. [45] learned the locality-
preserving similarity matrix after graph fusion, which was
equipped with c connected components. Zhan et al. [46]
strengthened the consistency of various graphs via a dis-
agreement cost function. Xu et al. [47] proposed a unified
framework that simultaneously realized spectral embedding
and nonnegative embedding, thus obtaining consistent clus-
tering results. Tang et al. [48] utilized the diffusion process to
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encode the potential manifold geometry structure of samples.
Wang et al. [49] learned a clustered representation via fusing
varying views, and simultaneously encoded the local graph
structure. Chen et al. [50] learned a uniformity graph matrix
from low-rank subspace representation tensor with adaptive
neighbor scheme.

Subspace learning aims to learn a low-dimensional embed-
ding from original data, which reflects the principal informa-
tion and is suitable for coping with high-dimensional data.
Self-representation is the most commonly used model, whose
mathematical form is written as

X = XZ + E, (1)

where X ∈ Rd×n is the original data, Z ∈ Rn×n denotes
the self-representation and E ∈ Rd×n is the error term. In
multi-view cases, the objective is usually formulated as

min
Z(v),E(v)

m∑
v=1

Ψ(Z(v)) + λ

m∑
v=1

Ω(E(v))

s.t. X(v) = X(v)Z(v) + E(v), v = 1, 2, . . . ,m,

(2)

where Ψ(·) denotes the regularization operation, and Ω(·) is a
designed loss function. Diverse selections of regularization and
loss function have formed multifarious multi-view subspace
clustering methods. Wang et al. [51] enhanced the diversity
of subspace representations via a position-aware exclusivity
term. Zhang et al. [52] addressed the nonlinear structure
problem in multi-view data through a robust low-rank kernel
method. Tang et al. [53] endeavoured to explore a common
low-rank affinity graph from multiple views, and learned a
set of adaptive weights via diversity regularization. Moreover,
the nonconvex low-rank tensor approximation manner was
also studied [54], which was used to explore the informative
components of the subspace representation tensor.

The semantic gap between varying data features may be
very large, which is harmful to the feature fusion. Therefore,
it is innovative to project different feature representations
onto the same space by canonical correlation analysis (CCA).
Chaudhuri et al. [55] learned a subspace representation from
various views via CCA. Luo et al. [56] computed the covari-
ance tensor to handle data with any number of views instead of
only two views. Different from the above two works, Houthuys
et al. [57] leveraged the kernel CCA to calculate the correlation
errors.

III. NOTATIONS AND PRELIMINARIES

First of all, the meanings of some mathematical symbol-
s are introduced in detail. Multi-view data is denoted by
X = {X(v)}mv=1, and X(v) ∈ Rd(v)×n. We use a, A, A
to denote a vector, a matrix, and a tensor, respectively. For a
tensor A ∈ Rn1×n2×n3 , Aijk denotes the (i, j, k)-th element
and A(i) indicates the i-th frontal slice. AT ∈ Rn2×n1×n3

is the transpose of A. Â = fft(A, [ ], 3) is the result of
tensor A after fast Fourier transformation (FFT) along the
third dimension. Likewise, A can be obtained by performing
inverse FFT on Â, i.e.,A = ifft(Â, [ ], 3). To understand the
definition of t-SVD based tensor nuclear norm, several related
definitions are necessary to introduce and listed below.

Definition 1: For a tensor A ∈ Rn1×n2×n3 , the definitions
of block diagonal matrix bdiag(A) and block circular matrix
bcirc(A) are presented as follows

bdiag(A) =


A(1)

A(2)

. . .
A(n3)

 ,

bcirc(A) =


A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)

 .
It can be seen that bdiag(A) is a new diagonal matrix
by rearranging the frontal slices {A(v)}n3

v=1 of tensor A
diagonally and bcirc(A) is formed by rearranging {A(v)}n3

v=1

vertically n3 times.
Definition 2: (t-product) Given two tensors M ∈

Rn1×n2×n3 and N ∈ Rn2×n4×n3 . Thus, the t-product G ∈
Rn1×n4×n3 of them is computed by

G =M ∗N = bvfold(bcirc(M) · bvec(N )), (3)

where bvec(N ) =
[
N (1);N (2); · · · ;N (n3)

]
∈ Rn2n3×n4

splices n3 frontal slices of tensor N vertically and
bvfold(bvec(G)) = G reconstructs the matrix bvec(G) into
a 3-order tensor.

Definition 3: (Orthogonal tensor) A tensor P ∈
Rn1×n1×n2 is orthogonal if it satisfies the following form

PT ∗P = P ∗PT = I, (4)

where the tensor I ∈ Rn1×n1×n2 is termed as an identity
tensor, whose first frontal slice is a n1 × n1 identity matrix
and the other frontal slices are all zeros.

Definition 4: (t-SVD) A tensor A ∈ Rn1×n2×n3 can be
decomposed via t-SVD

A = U ∗D ∗ VT , (5)

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal,
D ∈ Rn1×n2×n3 is f-diagonal. And f-diagonal tensor is a
tensor whose each frontal slice is a diagonal matrix. Fig. 2
demonstrates the result of a 3-order tensor decomposed by
t-SVD.

Definition 5: (t-SVD based tensor nuclear norm [25],
[58]) The t-SVD based tensor nuclear norm of A ∈
Rn1×n2×n3 is defined as the sum of diagonal values of all
frontal slices along with the minimum dimension in the f-
diagonal D̂.

‖A‖∗ = ||bdiag(Â)||∗ = ||bdiag(D̂)||∗

=

min{n1,n2}∑
i=1

n3∑
j=1

|D̂
(j)

(i, i)|,
(6)

where D̂
(j)

can be solved via Â
(j)

= Û
(j)
∗ D̂

(j)
∗ V̂

(j)T

.
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Fig. 1: The overall framework of the proposed ULTLSE. Firstly, the subspace representation Z(v) of each view is explored from the data
features, and {Z(v)}mv=1 are aggregated into the tensor Z via cat(·) function. Thus, the low-rank tensor learning and spectral embedding are
performed simultaneously, which is different from existing tensor based methods that separate the two processes without taking into account
their inner dependence. After iteration, the label indicator matrix can be directly obtained.

= * *

Fig. 2: The diagram of the t-SVD of a tensor with size n1×n2×n3.

IV. UNIFIED LOW-RANK TENSOR LEARNING AND
SPECTRAL EMBEDDING FOR MULTI-VIEW SUBSPACE

CLUSTERING

In this section, we first elaborate the proposed unified
framework ULTLSE for dealing with multi-view subspace
clustering problem. In addition, the optimization process based
on the alternating direction method of multipliers (ADMM) is
also explained.

A. Problem Formulation

The focus of multi-view learning is to mine the complemen-
tarity and consistency information from multi-view data. Most
available multi-view methods find and utilize the properties
from pairwise matrices by a local perspective. On the contrary,
t-SVD-MSC [20] first constructs a tensor composed of self-
representations of all views, then imposes the t-SVD based
tensor nuclear norm on it. After low-rank tensor optimization,
the high-order correlations are explored across all views. The

objective of t-SVD-MSC is written as

min
Z,E
‖Z‖∗ + λ‖E‖2,1

s.t. X(v) = X(v)Z(v) + E(v), v = 1, 2, . . . ,m,

Z = Φ
(
Z(1),Z(2), . . . ,Z(m)

)
,

E =
[
E(1);E(2); . . . ;E(m)

]
,

(7)

where E is constructed via the vertical splicing of {E(v)}mv=1,
and Φ(·) represents the operation of combining multiple
matrices with the same dimension into a tensor. || · ||2,1
is the l2,1-norm and defined as ‖X‖2,1 =

∑
j ‖X(:, j)‖2,

which makes the columns of E close to zero. After iterative
optimization, the tensor Z̃ with low-rank property can be
obtained. Thus, the consensus affinity matrix is computed
by 1

m

∑m
v=1

(∣∣Z(v)
∣∣+ |Z(v)T |

)
/2, then the low-dimensional

label indicator matrix F ∈ Rn×c is further learned by spectral
clustering, where c denotes the number of clusters.

From the above, we can observe that t-SVD-MSC yields
the consensus affinity matrix by averaging the m frontal slices
of Z̃ and separates the solving processes of Z̃ and F. The
practices have two obvious disadvantages. Firstly, each view
depicts a certain aspect of objects, there must be differences
between views. Therefore, averaging the tensor Z̃ to gain the
affinity matrix is unreasonable, which may affect the quality
of the label indicator matrix. Moreover, exploring spectral
embedding directly from multiple frontal slices {Z(v)}mv=1 in
a low-rank tensor Z̃ rather than the final affinity matrix is
more conducive to leveraging the complementarity hidden in
multi-view data. What needs to be emphasized that only one
global spectral embedding matrix is learned. Based on such
an idea, we propose the following method for the solution of
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the label indicator matrix F ∈ Rn×c,
m∑
v=1

(w(v))rTr(FTL
(v)

Z(v)F)

s.t. FTF = I,wT1 = 1, w(v) ≥ 0, v = 1, 2, . . . ,m,

(8)

where w is the weight vector composed of {w(v)}mv=1, and r
is a hyper parameter that adjusts the weight distribution. The
Laplacian matrix L

(v)

Z(v) is defined as D(v)−(Z(v) +Z(v)T )/2,
and D

(v)
ii =

∑
j(Z

(v) + Z(v)T )ij/2. In Eq. (8), the unique
spectral embedding F is learned from the set of {L(v)

Z(v)}mv=1,
then the complementary information across multiple views can
be injected into F. Secondly, the solution of F depends on
Z̃ . If the two terms are solved separately, their correlation
is fixed, it could not find the optimal label indicator matrix.
However, if the value of F is adjusted dynamically with the
optimization of Z̃ until convergence, it is more beneficial to
get the optimal solution. Hence, we propose to integrate the
low-rank tensor learning and spectral embedding as a unified
framework. For enabling this goal, Eq. (7) and Eq. (8) are
combined to construct the ultimate objective function:

min
Z,E,F,w(v)

‖Z‖∗ + λ‖E‖2,1︸ ︷︷ ︸
Low-rank tensor learning

+α

m∑
v=1

(w(v))rTr(FTL
(v)

Z(v)F)︸ ︷︷ ︸
Spectral embedding

s.t. X(v) = X(v)Z(v) + E(v), v = 1, 2, . . . ,m,

FTF = I,wT1 = 1, w(v) ≥ 0,

Z = Φ
(
Z(1),Z(2), . . . ,Z(m)

)
,

E =
[
E(1);E(2); . . . ;E(m)

]
.

(9)

Here, λ and α are two nonnegative parameters used to balance
the three terms. In Eq. (9), the low-rank subspace represen-
tation tensor and low-dimensional label indicator matrix are
learned at the meantime. After iteration, the latter can be
obtained without any intermediate process, over which the k-
means algorithm is applied for getting the clustering results.

B. Optimization Process
For solving Eq. (9), the ADMM method is introduced to

obtain the optimal solution of each variable. Before optimiza-
tion, we formulate the augmented Lagrangian function of Eq.
(9) as:

F
(
{Z(v)}mv=1; {E(v)}mv=1;H; {w(v)}mv=1;F

)
= ‖H‖∗ + λ‖E‖2,1 + α

m∑
v=1

(w(v))rTr(FTL
(v)

Z(v)F)

+

m∑
v=1

(
〈C(v),X(v) −X(v)Z(v) −E(v)〉

+
θ

2
||X(v) −X(v)Z(v) −E(v)‖2F

)
+ 〈T ,Z −H〉

+
ξ

2
‖Z −H‖2F ,

(10)

where H is the adjunct variable, the matrices {C(v)}mv=1 and
the tensor T are Lagrange multipliers, θ and ξ denote two

nonnegative parameters. Thus, we update various variables via
the approaches presented below.

1) Fix E, H, w(v), and F to optimize Z(v): Focusing on
the solution of one view, i.e., Z(v), the problem becomes

min
Z(v)

α(w(v))rTr(FTL
(v)

Z(v)F)

+ 〈C(v),X(v) −X(v)Z(v) −E(v)〉

+
θ

2
||X(v) −X(v)Z(v) −E(v)‖2F + 〈T(v),Z(v) −H(v)〉

+
ξ

2

∥∥∥Z(v) −H(v)
∥∥∥2
F
.

(11)

Setting the derivative of Eq. (11) with respect to Z(v) to be
zero, the solution of Z(v) can be obtained by

Z(v)∗ = (µX(v)TX(v) + ρI)−1(α(w(v))rFFT + θX(v)TX(v)

− θX(v)TE(v) + X(v)TC(v) + ξH(v) −T(v)).
(12)

2) Fix {Z(v)}mv=1,H, {w(v)}mv=1, and F to optimize E: The
problem becomes

min
E
λ‖E‖2,1 +

m∑
v=1

(
〈C(v),X(v) −X(v)Z(v) −E(v)〉

+
θ

2
||X(v) −X(v)Z(v) −E(v)‖2F

)
= min

E
λ||E||2,1 +

m∑
v=1

θ

2
||E− (X(v) −X(v)Z(v) +

1

θ
C(v))‖2F

= min
E
λ||E||2,1 +

θ

2
||E−P||2F ,

(13)

where P = [P(1);P(2); · · · ;P(m)] and P(v) = X(v) −
X(v)Z(v) + 1

θC
(v). Following the solution proposed in the

literature [15], E can be updated via

E∗:,j =

{
||P:,j ||2−λθ
‖P:,j ||2 P:,j , ‖P:,j‖2 >

λ
θ

0, otherwise.
(14)

3) Fix {Z(v)}mv=1, E, {w(v)}mv=1, and F to optimize H:
While keeping the related terms, the optimization of H is to
address the problem

min
H
||H||∗ + 〈T ,Z −H〉+

ξ

2
‖Z −H‖2F

= min
H
||H||∗ +

ξ

2
||H− (Z +

1

ξ
T )||2F .

(15)

For optimizing H more effectively, we rotate the size of H
from n × n × m to n × m × n. The rotation operation is
necessary. According to Eq. (6) above, SVD is performed on
a tensor’s each frontal slice after FFT when computing the
tensor nuclear norm. After rotation, as shown in Fig. 3, the
cross-view low-rank properties, that is, the global correlation
can be preserved. Inspired by [59], the close-form solution of
Eq. (15) is derived via

H∗ = U ∗ Cm/ξ(D) ∗ VT , (16)
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where Cm/ξ(D) = D ∗Q. Q is an f-diagonal tensor and its
diagonal entry in the Fourier domain is Q̂(i, i, k) = max{1−
m/ξ

D(i,i,k) , 0}.

n*m*n

Rotation

n*n*m

Fig. 3: The diagram of tensor rotation. The tensor size before rotation
is n∗n∗m, while the size after rotation is transformed to n∗m∗n.

4) Fix {Z(v)}mv=1,H, E, and F to optimize {w(v)}mv=1: The
problem is transformed into the form

min
w(v)

m∑
v=1

(w(v))rTr(FTL
(v)

Z(v)F)

s.t. wT1 = 1, w(v) ≥ 0.

(17)

Denoting B(v) = Tr(FTL
(v)

Z(v)F), we obtain the Lagrangian
function of Eq. (17) as follows:

L =

m∑
v=1

(w(v))rB(v) − η(

m∑
v=1

w(v) − 1). (18)

Deriving the derivative of w(v) in Eq. (18) and setting the
derivative value to zero, we have

w(v)∗ =
(B(v))1/(1−r)∑m
v=1(B(v))1/(1−r)

. (19)

5) Fix {Z(v)}mv=1, E,H, and {w(v)}mv=1 to optimize F: We
have the following problem

min
F
Tr(FTLF)

s.t. FTF = I,
(20)

where L =
∑m
v=1(w(v))rL

(v)

Z(v) . Thus, the eigenvectors cor-
responding to the first c smallest eigenvalues of L constitute
the updated F∗. To ensure that L(v)

Z(v) is positive semi-definite,
we perform a truncation strategy for Z(v), that is, negative
elements in Z(v) are set to 0.

6) Update the Lagrange multipliers C(v), T and nonnega-
tive parameters θ, ξ,

C(v)∗ = C(v) + µ(X(v) −X(v)Z(v) −E(v)),

T ∗ = T + ρ(Z −H),

θ∗ = min(ψ ∗ θ, θmax),

ξ∗ = min(ψ ∗ ξ, ξmax),

(21)

where ψ is a constant to adjust the convergence speed, θmax
and ξmax represent the maximal values of θ and ξ. The main
algorithm steps are summarized in Algorithm 1.

Algorithm 1 Unified Low-rank Tensor Learning and Spectral
Embedding for Multi-view Subspace Clustering (ULTLSE)

Input: Multi-view data X =
{
X(v)

}m
v=1

, X(v) ∈ Rd(v)×n,
regularization parameters λ, α.

1: Initialize Z0 = H0 = T 0 = 0, E0 = 0, C
(v)
0 = 0,

w
(v)
0 = 1

m , ψ = 2, ε = 10−7, θ0, ξ0, θmax = ξmax =
1010, t = 0.

2: while not convergent do
3: for v = 1 to m do
4: Update Z

(v)
t+1 by Eq. (12);

5: end for
6: Update Et+1 by Eq. (14);
7: Update Ht+1 by Eq. (16);
8: Update w(v)

t+1 by Eq. (19);
9: Update Ft+1 by Eq. (20);

10: Update C
(v)
t+1, T t+1, θt+1 and ξt+1 by Eq. (21);

11: Check the convergence conditions:
||X(v) −X(v)Z

(v)
t+1 −E

(v)
t+1||∞ ≤ ε,

||Z(v)
t+1 −H

(v)
t+1||∞ ≤ ε,

||Ft+1 − Ft||∞ ≤ ε.
12: B When all three losses satisfy the above conditions,

the model reaches the convergence, then the loop ends,
otherwise it continues;

13: t = t+ 1;
14: end while
Output: Label indicator matrix F.
15: B Perform k-means algorithm over F for obtaining the

clustering results.

V. EXPERIMENTS

A. Datasets Descriptions

In experiments, we collect eight datasets that can be divided
into three categories: text, scene, and object. Specifically,
text type includes 3Sources, BBCnews, and WikipediaArticles,
scene type includes Scene-15 and MITIndoor-67, object type
includes ALOI, Caltech-20, and Caltech-101. The details of
these datasets are described below, and Table I also presents
the detailed information.

3Sources 1 is comprised of 169 reports published at three
prestigious news websites: Reuters, BBC, and Guardian, which
cover six fields of technology, business, health, entertainment,
politics, and sport.

BBCnews 2 contains 685 news reports with five themes,
including sport, politics, business, entertainment, and technol-
ogy. Each item is represented by four types of features.

WikipediaArticles 3 is an article dataset that consists of
693 documents with 10 classes, and each entry has two feature
representations.

Scene-15 4 is composed of 4,485 indoor and outdoor scene
images spanning 15 classes. Three types of image features

1http://mlg.ucd.ie/datasets/3sources.html
2http://mlg.ucd.ie/datasets/bbc.html
3http://lig-membres.imag.fr/grimal/data.html
4http://www-cvr.ai.uiuc.edu/ponce grp/data/
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are extracted from each image, including PRI-CoLBP, CEN-
TRIST, and PHOW.

MITIndoor-67 is an indoor image collection of 5,360
images with 67 categories. Except for the same three features
as Scene-15, it has a peculiar feature representation extracted
by VGG-VD network.

ALOI 5 consists of 1,079 images of 10 objects, which are
photographed from various rotation angles and lighting con-
ditions. Four different views include HSV color histograms,
Haralick texture features, RGB color histograms and color
similarities.

TABLE I: Statistics of eight datasets.

Datasets Samples Views Clusters Category

3Sources 169 3 6 Text
BBCnews 685 4 5 Text

WikipediaArticles 693 2 10 Text
Scene-15 4,485 3 15 Scene

MITIndoor-67 5,360 4 67 Scene
ALOI 1,079 4 10 Object

Caltech-20 2,386 6 20 Object
Caltech-101 8,677 4 101 Object

Caltech 6 is a collection with a large number of object im-
ages. In the experiments, we adopt two versions of the dataset.
Specifically, Caltech-20 is composed of 2,386 images of 20
categories from six views: wavelet moments (WM), GIST,
CENTRIST, HOG, Gabor, and LBP features. Caltech-101
contains 8,677 images with 101 kinds of objects from four
different features: PHOW, LBP, CENTRIST and the feature
representation extracted via Inception V3 network.

Fig. 4: Sample images from the dataset Caltech, which contains 101
different objects such as butterfly, steamship, chandelier, cup, dolphin.

B. Compared Algorithms and Parameter Settings

In order to make the experiments more objective and com-
prehensive, we choose nine state-of-the-art multi-view clus-
tering approaches with three categories: graph-based methods
(AMGL, MLAN, and MCGC), subspace-based approaches

5https://elki-project.github.io/datasets/multi-view
6http://www.vision.caltech.edu/Image Datasets/Caltech101

(ECMSC, CSMSC, MSC-IAS, and MCLES), and tensor-
based approaches (LTMSC and t-SVD-MSC). Besides, we
also compare the proposed model with traditional single-view
methods such as SPC and LRR.
SPCbest utilizes the most informative view for clustering

and obtains the best performance via spectral clustering.
LRRbest [15] achieves the optimal clustering performance

through the low-rank subspace representation method with the
highest quality view.

AMGL [60] extends the objective function of standard
spectral clustering to multi-view cases, and explores the unique
spectral embedding matrix in the new objective function.

MLAN [45] learns a global similarity matrix incorporating
local structure information of data, which aims to alleviate the
influence of noise and outlier samples.

MCGC [46] minimizes discrepancy between varying views
to obtain a consistent graph, whose rank of Laplacian matrix
is constrained with the value same as the cluster number.

ECMSC [51] mines the information complementarity in
multiple views by a position-aware exclusivity term, and the
label indicator matrix is solved with a consistency term.

CSMSC [16] treats multi-view subspace representations as
the combination of a batch of specific representations and a
consistent representation.

MSC-IAS [61] learns an intactness-aware similarity matrix
in an intact space through the HSIC regularization.

MCLES [13] exploits a latent embedding space from mul-
tiple features, based on which the similarity matrix and cluster
indicator matrix are learned at the same time.

LTMSC [19] constructs a 3-order tensor that is comprised
of the self-representations of multiple views, then the rank
of the tensor is minimized by SNN to preserve the critical
components.

t-SVD-MSC [20] combines all views’ self-representations
into a 3-order tensor, whose low-rank components are encoded
by the t-SVD based tensor nuclear norm.

Additionally, some parameter settings in above compared
methods are described here. In MLAN, each sample is as-
signed to 9 nearest neighbors and the parameter λ ranges in
[1, 20]. In MCGC, we tune the parameter β in [10, 100].
In ECMSC, the parameters α, β range [0.1, 0.5], [0.2, 0.7],
respectively, and η is set 1.2. In CSMSC, we adjust the
parameters λC and λD by varying in [0.001, 1]. In MSC-
IAS, the dimension of latent intact space data is set 500, the
nearest neighbor number k ranges in [3, 10], and the parameter
λ2 is tuned in [0.05, 1]. In MCLES, the parameters α, β, γ,
and d vary in [0.2, 2], [0.2, 2], [0.001, 0.01], and [10, 100],
respectively. In LTMSC, we tune the parameter γ in [0.1, 10].
In t-SVD-MSC, we vary the parameter λ in [0.01, 2].

C. Evaluation Metrics

To quantify the clustering results, clustering accuracy (AC-
C), normalized mutual information (NMI), adjusted rand index
(ARI), F-score, precision, and recall are used to evaluate the
performance of algorithms. In particular, the larger values
demonstrate the better performance for the above metrics.
Their calculation rules are described below.
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TABLE II: Performance of various clustering methods on text datasets 3Sources, BBCnews, and WikipediaArticles.

Datasets Methods ACC NMI ARI F-score Precision Recall

3Sources

SPCbest 0.572±0.024 0.459±0.022 0.349±0.030 0.491±0.021 0.525±0.035 0.461±0.011
LRRbest 0.610±0.026 0.462±0.003 0.406±0.023 0.568±0.019 0.439±0.015 0.670±0.043
AMGL 0.341±0.037 0.072±0.031 -0.017±0.019 0.348±0.007 0.226±0.008 0.774±0.079
MLAN 0.763±0.000 0.656±0.000 0.571±0.000 0.683±0.000 0.609±0.000 0.777±0.000
MCGC 0.296±0.000 0.079±0.000 -0.040±0.000 0.335±0.000 0.216±0.000 0.744±0.000
ECMSC 0.346±0.025 0.132±0.006 0.011±0.031 0.295±0.013 0.240±0.019 0.391±0.043
CSMSC 0.630±0.003 0.443±0.007 0.502±0.005 0.627±0.003 0.580±0.006 0.683±0.002

MSC-IAS 0.623±0.003 0.567±0.009 0.429±0.016 0.546±0.012 0.621±0.016 0.487±0.009
MCLES 0.640±0.042 0.437±0.058 0.366±0.070 0.558±0.041 0.433±0.050 0.790±0.020
LTMSC 0.782±0.003 0.699±0.008 0.658±0.008 0.739±0.006 0.726±0.011 0.725±0.007

t-SVD-MSC 0.781±0.000 0.678±0.000 0.658±0.000 0.745±0.000 0.683±0.000 0.818±0.000
ULTLSE 0.817±0.005 0.711±0.010 0.717±0.004 0.789±0.009 0.720±0.006 0.873±0.013

BBCnews

SPCbest 0.438±0.002 0.295±0.001 0.204±0.001 0.399±0.000 0.382±0.002 0.417±0.003
LRRbest 0.802±0.000 0.568±0.000 0.621±0.000 0.712±0.000 0.697±0.000 0.727±0.000
AMGL 0.344±0.026 0.016±0.009 0.004±0.011 0.373±0.004 0.236±0.004 0.893±0.099
MLAN 0.853±0.007 0.698±0.010 0.716±0.005 0.783±0.004 0.776±0.003 0.790±0.004
MCGC 0.350±0.000 0.039±0.000 0.001±0.000 0.373±0.000 0.235±0.000 0.903±0.000
ECMSC 0.308±0.028 0.047±0.009 0.008±0.018 0.322±0.017 0.239±0.009 0.497±0.064
CSMSC 0.917±0.000 0.770±0.000 0.807±0.000 0.853±0.000 0.847±0.000 0.859±0.000

MSC-IAS 0.820±0.001 0.632±0.001 0.647±0.002 0.728±0.001 0.741±0.001 0.715±0.002
MCLES 0.706±0.012 0.482±0.017 0.706±0.012 0.474±0.032 0.626±0.020 0.508±0.024
LTMSC 0.579±0.000 0.424±0.006 0.401±0.003 0.547±0.003 0.524±0.002 0.572±0.004

t-SVD-MSC 0.958±0.000 0.866±0.000 0.900±0.000 0.923±0.000 0.925±0.000 0.921±0.000
ULTLSE 0.994±0.000 0.977±0.000 0.985±0.000 0.989±0.000 0.990±0.000 0.987±0.000

WikipediaArticles

SPCbest 0.552±0.001 0.519±0.000 0.410±0.000 0.473±0.000 0.485±0.000 0.462±0.000
LRRbest 0.554±0.000 0.521±0.000 0.417±0.000 0.479±0.000 0.491±0.000 0.468±0.000
AMGL 0.531±0.037 0.494±0.019 0.335±0.027 0.417±0.021 0.371±0.032 0.480±0.029
MLAN 0.182±0.000 0.059±0.000 0.005±0.000 0.154±0.000 0.112±0.000 0.244±0.000
MCGC 0.502±0.000 0.418±0.000 0.265±0.000 0.362±0.000 0.299±0.000 0.456±0.000
ECMSC 0.561±0.000 0.516±0.000 0.411±0.000 0.472±0.000 0.493±0.000 0.454±0.000
CSMSC 0.474±0.009 0.356±0.008 0.290±0.011 0.364±0.010 0.381±0.010 0.359±0.010

MSC-IAS 0.463±0.014 0.428±0.013 0.294±0.017 0.372±0.015 0.368±0.017 0.377±0.016
MCLES 0.543±0.003 0.474±0.004 0.359±0.005 0.430±0.004 0.421±0.005 0.440±0.004
LTMSC 0.531±0.003 0.495±0.005 0.407±0.002 0.471±0.002 0.481±0.002 0.461±0.003

t-SVD-MSC 0.513±0.002 0.475±0.004 0.386±0.003 0.452±0.003 0.439±0.003 0.464±0.002
ULTLSE 0.574±0.001 0.531±0.002 0.430±0.001 0.492±0.001 0.491±0.001 0.494±0.001

TABLE III: Performance of various clustering methods on scene datasets Scene-15 and MITIndoor-67.

Datasets Methods ACC NMI ARI F-score Precision Recall

Scene-15

SPCbest 0.437±0.015 0.421±0.010 0.270±0.010 0.321±0.022 0.314±0.016 0.329±0.020
LRRbest 0.445±0.013 0.426±0.018 0.272±0.015 0.324±0.010 0.316±0.015 0.333±0.015
AMGL 0.402±0.040 0.455±0.038 0.263±0.058 0.340±0.048 0.228±0.041 0.695±0.057
MLAN 0.332±0.000 0.475±0.000 0.151±0.000 0.248±0.000 0.150±0.000 0.731±0.000
MCGC 0.284±0.000 0.325±0.000 0.160±0.000 0.258±0.000 0.153±0.000 0.817±0.000
ECMSC 0.457±0.001 0.463±0.002 0.303±0.001 0.357±0.001 0.318±0.001 0.408±0.001
CSMSC 0.495±0.007 0.532±0.004 0.367±0.005 0.415±0.005 0.377±0.003 0.462±0.008

MSC-IAS 0.583±0.003 0.603±0.003 0.429±0.006 0.472±0.006 0.438±0.009 0.512±0.013
MCLES - - - - - -
LTMSC 0.574±0.009 0.571±0.011 0.424±0.010 0.465±0.007 0.452±0.003 0.479±0.008

t-SVD-MSC 0.812±0.007 0.858±0.007 0.771±0.003 0.788±0.001 0.743±0.006 0.839±0.003
ULTLSE 0.868±0.004 0.894±0.006 0.844±0.020 0.855±0.009 0.854±0.003 0.855±0.005

MITIndoor-67

SPCbest 0.443±0.011 0.559±0.009 0.304±0.011 0.315±0.013 0.294±0.010 0.340±0.014
LRRbest 0.120±0.004 0.226±0.006 0.031±0.007 0.045±0.004 0.044±0.006 0.047±0.004
AMGL 0.146±0.009 0.232±0.015 0.037±0.004 0.063±0.004 0.035±0.002 0.340±0.019
MLAN 0.468±0.010 0.611±0.003 0.312±0.006 0.323±0.006 0.299±0.008 0.352±0.003
MCGC 0.081±0.000 0.118±0.000 0.009±0.000 0.038±0.000 0.020±0.000 0.581±0.000
ECMSC 0.353±0.002 0.489±0.001 0.216±0.002 0.228±0.001 0.213±0.001 0.247±0.002
CSMSC 0.401±0.012 0.513±0.005 0.250±0.004 0.262±0.004 0.247±0.006 0.280±0.002

MSC-IAS 0.333±0.006 0.466±0.002 0.176±0.004 0.189±0.004 0.174±0.004 0.207±0.004
MCLES - - - - - -
LTMSC 0.431±0.002 0.546±0.004 0.280±0.008 0.290±0.002 0.279±0.006 0.306±0.005

t-SVD-MSC 0.684±0.005 0.750±0.007 0.555±0.005 0.562±0.008 0.543±0.005 0.582±0.004
ULTLSE 0.795±0.023 0.911±0.017 0.755±0.020 0.759±0.021 0.688±0.022 0.844±0.012
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Let τi and pi denote the truth label and prediction label of
the i-th sample, respectively. n represents the number of data
points. Then ACC is defined as

ACC =

∑n
i=1 δ (τi,map (pi))

n
, (22)

where map(·) denotes the optimal mapping function that
permutes the prediction labels to match the truth labels, δ(·, ·)
is a discriminant function and has following property

δ(a, b) =

{
1, if a = b;
0, otherwise.

NMI presents the indication of the shared mutual infor-
mation between two clusters and can be calculated by the
following confusion matrix

NMI(Q,P) =

∑c̃
i=1

∑c
j=1 |Pi ∩Qj | log

n|Pi∩Qj |
|Pi||Qj |√(∑c̃

i=1 |Pi| log |Pi|n

)(∑c
j=1 |Qj | log

|Qj |
n

) ,
(23)

where Q = {Qj}cj=1, P = {Pi}c̃i=1 denote the set of truth
label and the set of prediction label, respectively.

ARI is a distance metric to measure the similarity degree
between two clusters. It is defined as

ARI =
A− BC

n(n−1)/2

(1/2)(B + C)− BC
n(n−1)/2

, (24)

where A =
∑
i,j

Kij(Kij−1)
2 , B =

∑
i
Ki(Ki−1)

2 and C =∑
j
Kj(Kj−1)

2 . Specifically, Kij represents the number of
samples that should be partitioned into the i-th cluster but
partitioned into the j-th cluster. Ki, Kj denote the quantity of
data points belonging to the i-th and j-th cluster, respectively.

Let TP be the number of correctly labeled positive cluster
samples and FP be wrongly labeled positive cluster samples.
Thus, the calculation formula of precision is written as

Precision =
TP

TP + FP
. (25)

Furthermore, by introducing the variable FN that refers to the
number of entries wrongly labeled negative cluster, recall is
computed by

Recall =
TP

FP + FN
. (26)

F-score is defined by the harmonic mean of precision and
recall

F-score = 2
Precision · Recall

Precision + Recall
. (27)

D. Experimental Results and Discussions

1) Performance overview. We list the detailed experimental
results in Tables II-IV, where bold values indicate the best
results. Since the running time of MCLES on the datasets
Scene-15, MITIndoor-67, and Caltech-101 is too long, we
use the symbol ”-” to replace the results. From the numerical
values, we can obtain some insights:
• The proposed ULTLSE outperforms other clustering ap-

proaches in most cases. In particular, compared with the
second-best method t-SVD-MSC, ULTLSE improves by

11.1%, 16.1%, 20.0%, 19.7%, 14.5%, 26.2% in terms
of six metrics on the dataset MITIndoor, respectively.
Similarly, ULTLSE achieves 7.2%, 10.0%, 10.8%, 9.7%,
20.5% improvements with respect to the five metrics
on the dataset ALOI except for Precision. At the same
time, our model performs better than LTMSC on all
datasets, which also belongs to tensor-based methods.
t-SVD-MSC and LTMSC separate the learning process
of the low-rank tensor from that of the label indicator
matrix, thereby ignoring the dependency between them.
This practice makes the learned label indicator matrix less
accurate and directly affects the final clustering results.
Furthermore, they treat all views indiscriminately, which
can not enhance the contributions of high-quality views
and makes the results susceptible to interference from
low-quality views. In view of the above disadvantages,
ULTLSE integrates low-rank tensor learning and spectral
embedding into a joint model, where the label indicator
matrix can be directly obtained after iteration. Also,
ULTLSE learns an adaptive weight for each view to
distinguish the contributions of different feature repre-
sentations.

• Multi-view clustering methods are capable of segmenting
data points better than single-view methods. This is
because single-view data lacks a more comprehensive
description of objects while multi-view data has richer
semantic information, which is explored and utilized by
multi-view approaches. However, it can also be seen that
many multi-view methods perform worse than single-
view methods on the dataset WikipediaArticles. The
main reason may be that the differences between views
are large and it is difficult to find effective consistent
information.

• The tensor-based method LTMSC does not perform as
well as t-SVD-MSC and ULTLSE on most datasets,
which uses SNN to constrain the rank of the target tensor
while the latter two methods adopt t-SVD based nuclear
norm. SNN is a loose substitute of Tucker rank and has
difficulty to uncovering the global structure. However, the
t-SVD based nuclear norm implements SVD decompo-
sition to the entire tensor, then the complementary and
consistent information can be explored across all views.

• The graph-based methods AMGL and MCGC do not
perform well on the datasets 3Sources, Scene-15,
MITIndoor-67, and Caltech-101, which have higher di-
mensions or possess more samples than other datasets.
Datasets with these characteristics contain more redun-
dant information and noise that could have a great impact
on the construction of graphs.

2) The necessity of weights {w(v)}mv=1. As shown in Table
V, we can see that different feature representations produce
varying performance even for the same dataset via spectral
clustering. The differences between various views in the same
dataset could also be very large. Furthermore, taking the
dataset WikipediaArticles as an example, the weights of two
views are 0.3024 and 0.6976, respectively, which matches
the performance of each view. Therefore, it is necessary to
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TABLE IV: Performance of various clustering methods on object datasets ALOI, Caltech-20, and Caltech-101.

Datasets Methods ACC NMI ARI F-score Precision Recall

ALOI

SPCbest 0.580±0.020 0.718±0.015 0.535±0.019 0.592±0.015 0.479±0.025 0.777±0.012
LRRbest 0.602±0.021 0.554±0.007 0.458±0.009 0.515±0.008 0.490±0.010 0.542±0.007
AMGL 0.522±0.040 0.549±0.017 0.332±0.024 0.410±0.019 0.347±0.026 0.503±0.010
MLAN 0.547±0.016 0.551±0.026 0.302±0.045 0.404±0.012 0.277±0.014 0.768±0.024
MCGC 0.657±0.000 0.626±0.000 0.421±0.000 0.499±0.000 0.367±0.000 0.779±0.000
ECMSC 0.645±0.000 0.611±0.000 0.423±0.000 0.491±0.000 0.413±0.000 0.606±0.000
CSMSC 0.756±0.000 0.733±0.000 0.636±0.000 0.674±0.000 0.638±0.000 0.714±0.000

MSC-IAS 0.613±0.039 0.648±0.015 0.479±0.027 0.536±0.023 0.487±0.032 0.597±0.025
MCLES 0.497±0.034 0.518±0.026 0.356±0.033 0.444±0.026 0.324±0.031 0.707±0.009
LTMSC 0.619±0.000 0.684±0.000 0.533±0.000 0.586±0.000 0.516±0.000 0.678±0.000

t-SVD-MSC 0.798±0.000 0.811±0.000 0.729±0.000 0.757±0.000 0.788±0.000 0.728±0.000
ULTLSE 0.870±0.027 0.911±0.016 0.837±0.025 0.854±0.026 0.788±0.031 0.933±0.021

Caltech-20

SPCbest 0.424±0.010 0.540±0.006 0.310±0.007 0.367±0.007 0.719±0.011 0.247±0.005
LRRbest 0.522±0.033 0.545±0.008 0.380±0.037 0.440±0.037 0.739±0.019 0.314±0.035
AMGL 0.515±0.031 0.521±0.038 0.269±0.038 0.404±0.028 0.359±0.045 0.472±0.058
MLAN 0.530±0.007 0.473±0.002 0.202±0.007 0.376±0.007 0.281±0.003 0.571±0.018
MCGC 0.537±0.000 0.586±0.000 0.392±0.000 0.480±0.000 0.541±0.000 0.430±0.000
ECMSC 0.496±0.006 0.576±0.006 0.393±0.015 0.459±0.013 0.689±0.034 0.344±0.010
CSMSC 0.533±0.037 0.605±0.009 0.421±0.003 0.480±0.040 0.770±0.020 0.349±0.037

MSC-IAS 0.542±0.019 0.536±0.014 0.412±0.025 0.489±0.024 0.610±0.022 0.409±0.031
MCLES 0.452±0.015 0.595±0.029 0.226±0.031 0.333±0.23 0.392±0.017 0.290±0.037
LTMSC 0.529±0.047 0.598±0.021 0.419±0.050 0.476±0.049 0.788±0.036 0.341±0.043

t-SVD-MSC 0.613±0.029 0.722±0.010 0.486±0.032 0.537±0.031 0.385±0.029 0.878±0.013
ULTLSE 0.670±0.022 0.840±0.012 0.636±0.018 0.680±0.015 0.910±0.010 0.543±0.016

Caltech-101

SPCbest 0.484±0.019 0.723±0.032 0.319±0.014 0.340±0.025 0.597±0.018 0.235±0.020
LRRbest 0.510±0.009 0.728±0.014 0.304±0.017 0.339±0.008 0.627±0.012 0.231±0.010
AMGL 0.221±0.011 0.347±0.035 0.263±0.058 0.025±0.020 0.074±0.017 0.042±0.011
MLAN 0.598±0.010 0.731±0.018 0.251±0.028 0.282±0.025 0.194±0.032 0.539±0.047
MCGC 0.355±0.000 0.428±0.000 0.038±0.000 0.087±0.000 0.048±0.000 0.474±0.000
ECMSC 0.352±0.011 0.581±0.006 0.262±0.017 0.275±0.017 0.436±0.024 0.201±0.013
CSMSC 0.603±0.021 0.808±0.007 0.432±0.026 0.442±0.026 0.710±0.026 0.321±0.022

MSC-IAS 0.569±0.011 0.763±0.014 0.386±0.054 0.404±0.051 0.403±0.023 0.412±0.028
MCLES - - - - - -
LTMSC 0.565±0.010 0.787±0.006 0.401±0.008 0.411±0.008 0.694±0.015 0.292±0.006

t-SVD-MSC 0.607±0.005 0.858±0.003 0.430±0.005 0.440±0.010 0.742±0.007 0.323±0.009
ULTLSE 0.696±0.009 0.877±0.004 0.578±0.025 0.590±0.026 0.549±0.018 0.639±0.022

(a) 3Sources (b) BBCnews (c) WikipediaArticles

(d) Scene-15 (e) ALOI (f) Caltech-20

Fig. 5: ACC of the proposed ULTLSE given various combinations of λ ∈ {0.01, 0.02, . . . , 1} and α ∈ {0.1, 0.2, . . . , 1}.
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TABLE VII: Running time (seconds) on eight datasets for ten multi-view methods.

Methods AMGL MLAN MCGC ECMSC CSMSC MSC-IAS MCLES LTMSC t-SVD-MSC ULTLSE

3Sources 0.13 0.20 0.80 107.62 20.77 12.48 7.37 14.77 9.61 5.04
BBCnews 1.69 3.26 3.68 1231.65 181.36 36.78 4205.90 175.75 190.12 61.80

WikipediaArticles 6.99 0.99 3.01 21.41 19.29 4.60 1988.10 32.50 8.23 5.30
Scene-15 1355.86 319.04 702.51 5968.76 6423.50 344.87 - 8928.62 3085.64 1238.90

MITIndoor 865.98 746.28 2029.80 9530.68 9105.9 678.03 - 10674.58 4824.69 2725.3
ALOI 12.50 2.06 5.83 135.41 90.51 14.48 12180.63 131.56 55.87 94.46

Caltech-20 90.42 74.36 133.78 880.77 865.91 140.04 93754.21 1968.00 843.05 301.97
Caltech-101 5549.70 1254.70 7065.12 25708.86 17069.29 689.71 - 24962.91 13685.87 9983.85

TABLE V: Comparison of clustering performance (ACC/NMI) on
individual view via spectral clustering.

Datasets WikipediaArticles Scene-15 Caltech-20
View 1 0.198/0.655 0.475/0.452 0.257/0.247
View 2 0.552/0.519 0.359/0.359 0.291/0.346
View 3 - 0.312/0.295 0.287/0.343
View 4 - - 0.424/0.540
View 5 - - 0.404/0.496
View 6 - - 0.344/0.447

TABLE VI: Computational complexity of different methods.

Method Category Computational complexity

AMGL garph-based O(tcn2)
MLAN garph-based O(n3 + tcn2)
MCGC garph-based O(tmn2)
ECMSC subspace-based O((t+m)n3)
CSMSC subspace-based O(tmn3)

MSC-IAS subspace-based O(tn2)
MCLES subspace-based O(t(d2 + n3 + cn2))
LTMSC tensor-based O(tmn3)

t-SVD-MSC tensor-based O(n3 + tmn2 log(n))
ULTLSE tensor-based O(tmn2log(n))

consider and measure the specific contributions of different
views.

3) Parameter selection and sensitivity analysis. In the mod-
el, two main parameters play important roles: λ, α. Specifi-
cally, λ is set 0.1 on the datasets 3Sources, WikipediaArticles,
and ALOI, 0.01 on the datasets BBCnews, MITIndoor-67,
Caltech-20, and Caltech-101, and 0.05 on the dataset Scene-
15. α is set 0.8 on the datasets 3Sources and MITIndoor-
67, 0.1 on the datasets WikipediaArticles and Caltech-101, 1,
0.5, 0.6, 0.4 on the datasets BBCnews, Scenes-15, ALOI, and
Caltech-20, respectively. As for the parameters µ and ρ, we
set their values to 10−2 on the datasets BBCnews, Scene-15,
and MITIndoor-67. For the dataset 3Sources, Caltech-20, and
Caltech101, their values are set 10−3, 10−2, respectively. For
the dataset WikipediaArticles, their values are set 10−3, 10−1,
respectively. For the dataset ALOI, their values are set 10−4,
10−3, respectively.

Furthermore, we investigate the influence of parameters λ
and α on the model ULTLSE. Specifically, λ ranges in {0.01,
0.02, 0.04, 0.06, 0.1, 0.2, 0.4, 0.6, 0.8, 1} and α ranges in
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. Fig. 5 shows the
specific impact of different combinations of λ and α on the
performance of ULTLSE on six datasets. It can be seen that the
performance fluctuates relatively large for various settings of
λ and α on the datasets BBCnews and Caltech-20. Especially,
λ should be set relatively small on the dataset BBCnews,

otherwise the performance will degrade dramatically. For the
other datasets, the model is relatively insensitive to the changes
of two parameters.

4) Complexity analysis and comparison. For the proposed
model ULTLSE, the major computation complexity lies in
the calculation of E, H, and F. Specifically, solving the
subproblem of E needs O(mn2), and updating F takes
cn2. As for the solution of H, it is the most important
part and costs O(m2n2 + mn2log(n)), where the former
corresponds to singular value decomposition and the latter
corresponds to FFT operation and inverse FFT operation.
Generally, the overall computational complexity of ULTLSE
is O(t(mn2 +m2n2 +mn2log(n)+cn2)), where t represents
the number of iterations and c denotes the number of clusters.
However, there are situations that n � m and n � c in
datasets. Hence, we can use O(tmn2log(n)) to represent the
computational complexity of ULTLSE.

Table VI reveals the computational complexity of the com-
pared multi-view algorithms. Moreover, the running time on
eight datasets for ten multi-view methods is exhibited in Table
VII. It is observed that graph-based approaches perform better
than subspace-based and tensor-based approaches in terms of
operation efficiency, which is because the self-representation
learning and the tensor singular value decomposition are more
time-consuming. Nevertheless, the running time of MSC-IAS
is comparable to that of graph-based methods, and even shorter
on the dataset Caltech-101. The main reason is that the sparse
analysis technology is employed on the Laplacian matrix in
the model. Additionally, it is worth noting that ULTLSE has
lower computation cost compared with LTMSC and t-SVD-
MSC, which benefits from the integration of low-rank tensor
learning and spectral embedding.

5) Convergence analysis. When there are three or more
block variables, it is unclear whether inexact ALM is conver-
gent [62]. ULTLSE has five blocks variables and its objective
function is not smooth, making it difficult to testify the
convergence of ULTLSE. Nevertheless, according to the work
[62], two factors are enough (but may not be necessary)
for ULTLSE to be convergent: (1) Each feature matrix X(v)

is of full column rank; (2) The optimality gap produced
in each iteration step is monotonically decreasing. The first
factor can be satisfied by factorizing Z(v) into Q(v)Ẑ(v),
and Q(v) can be solved via orthogonalizing the columns
of X(v)T . As for the second factor, since the Lagrangian
function Eq. (10) is convex, the monotonically decreasing
factor can be realized to a certain extent according to [62].
Generally speaking, the proposed ULTLSE guarantees good
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Fig. 6: Convergence results on the datasets 3Sources, BBCnews, and WikipediaArticles.
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Fig. 7: The visualization of six multi-view clustering methods via t-SNE on the dataset ALOI, where different colors represent different
clusters.

convergence properties. We present the empirical convergence
analysis on the datasets 3Sources, BBCnews, and Wikipedi-
aArticles in Fig. 6, where the blue line represents the error of
max(

∑m
v=1 ||X(v) − X(v)Z

(v)
k+1 − E

(v)
k+1||∞,

∑m
v=1 ||Z

(v)
k+1 −

H
(v)
k+1||∞, ||Fk+1 − Fk||∞). We can see the error values will

converge within a certain number of iterations.

6) Visualization of clustering results. For illustrating the
clustering results visually, we select the best results in each
algorithm category and present them in Fig. 7, where different
colors indicate different clusters. In the process, t-SNE tech-
nology is adopted to reduce the dimension of data to two.
Obviously, the cluster partitions of the dataset ALOI by the
algorithms LRRbest, MCGC, LTMSC are relatively messy,
while CSMSC, t-SVD-MSC, and our method ULTLSE achieve
the segmentation of data points well. Moreover, it can be seen
that ULTLSE realizes the distinction of clusters more clearly
and reasonably, which is also verified by the values of their

corresponding specific evaluation metrics.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel unified framework

ULTLSE for multi-view subspace clustering, which integrates
optimization of low-rank tensor learning and spectral em-
bedding. In ULTLSE, the self-representations of all views
constitute the target tensor, and the t-SVD based tensor nuclear
norm is adopted to recover the fundamental components.
Therefore, the exploration of information complementarity and
consistency is realized based on global perspective instead of
pairwise matrices. While recovering a low-rank tensor space,
we manage to learn the label indicator matrix by spectral
embedding at the same time. The diversity of different views is
also considered, an adaptive weighting coefficient is assigned
to each view. Moreover, we perform extensive comparative
experiments on eight real-world datasets and prove the supe-
riority of ULTLSE. In the future, we wish to further reduce
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the computation complexity of the proposed ULTLSE, thereby
improving the operation efficiency on large-scale datasets.
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