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Abstract— Graph convolutional network (GCN) has gained
widespread attention in semisupervised classification tasks.
Recent studies show that GCN-based methods have achieved
decent performance in numerous fields. However, most of the
existing methods generally adopted a fixed graph that cannot
dynamically capture both local and global relationships. This
is because the hidden and important relationships may not be
directed exhibited in the fixed structure, causing the degraded
performance of semisupervised classification tasks. Moreover, the
missing and noisy data yielded by the fixed graph may result
in wrong connections, thereby disturbing the representation
learning process. To cope with these issues, this article proposes
a learnable GCN-based framework, aiming to obtain the optimal
graph structures by jointly integrating graph learning and
feature propagation in a unified network. Besides, to capture
the optimal graph representations, this article designs dual-
GCN-based meta-channels to simultaneously explore local and
global relations during the training process. To minimize the
interference of the noisy data, a semisupervised graph infor-
mation bottleneck (SGIB) is introduced to conduct the graph
structural learning (GSL) for acquiring the minimal sufficient
representations. Concretely, SGIB aims to maximize the mutual
information of both the same and different meta-channels by
designing the constraints between them, thereby improving the
node classification performance in the downstream tasks. Exten-
sive experimental results on real-world datasets demonstrate the
robustness of the proposed model, which outperforms state-of-
the-art methods with fixed-structure graphs.

Index Terms— Graph convolutional network (GCN), graph
information bottleneck, graph learning, mutual information,
semisupervised learning.

I. INTRODUCTION

WITH the powerful capability of expression, graphs have
been universally leveraged to depict real-world applica-

tions, that is, knowledge graphs [1], [2], social connections [3],
[4], paper citations [5], [6], [7], and affinity networks [8], [9],
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[10]. Recently, the graph convolutional network (GCN) [11]
has drawn considerable attention owing to the desirable per-
formance for graph learning. Based on the critical theoretical
foundations, the GCN efficiently employs the message-passing
mechanism to aggregate feature information from neighbors
through their connective relationships to obtain a meaningful
node-level representation for the classification tasks. Numer-
ous variants of the GCN have been widely proposed in
different fields, such as computer vision [12], [13], [14], social
network analysis [15], [16], [17], node clustering [18], [19],
[20], and node classification [21], [22], [23]. A large number
of studies have validated that GCN-based models can attain
inspiring performance in various tasks.

Considering that labeling data is still time-consuming and
labor-intensive, semisupervised learning [24], [25], [26] with
GCNs which endeavors to utilize limited labeled data as
well as relatively large amounts of unlabeled data for model
training has been researched. Although these GCN-based
semisupervised methods have gained noticeable progress and
demonstrated their superior performance in recent years, they
generally used a fixed graph with noises that may not be
optimal for node classification. In other words, only using
the original topology pattern containing noisy data for feature
propagation, while ignoring the dynamical potential global
connective relationships conducted by the training process may
lose some hidden connections, thereby leading to incomplete
node representations and undesired performance. There are
still limited studies making efforts to learn dynamical graphs
combined with the GCN. For instance, Jiang et al. [27] pro-
posed a graph learning convolutional framework that designed
a conductive graph learning operation to learn an optimal
representation for serving semisupervised classification tasks.
Nevertheless, it did not consider the interference of noises
involved in data, and missing or wrong connections may
propagate unsatisfactory node information when aggregating
features by connective relationships. In summary, to make
feature propagation more efficient, it is vital to explore graph
structural learning (GSL) while alleviating the disruption of
noises as much as possible.

In particular, the information bottleneck is a critical princi-
ple that endeavors to learn a robust representation from noisy
data. It encourages learning a minimum sufficient represen-
tation of noisy data to limit the disruption of noises and
preserve the maximal valid information on the target through
mutual information. Prior works have applied the information
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Fig. 1. Graph structural construction based on local and global connective
relationships. For a global graph, only edges (blue) with higher importance
are enhanced, and other edges (alternatives) are subdued. Then combined
with local and global graphs, an attention mechanism endeavors to learn the
importance of different nodes, thereby forming a learned graph.

bottleneck [28], [29], [30] to representation learning. However,
these methods only applied the information bottleneck to
fixed-structural graph data and did not focus on the part of
learning structures, which may lead to poor correlations for
the final predictive representations. In addition, they did not
consider the consistency between different channels, which
may make different channels unbending for classification
tasks.

To address these issues, this article proposes a flexible
GCN-based framework named learnable GCN with semisu-
pervised graph information bottleneck (LGCN-SGIB), which
jointly learns dynamical graph structures with local and global
connective relationships and designs a semisupervised graph
information bottleneck (SGIB) to alleviate the interference of
noises. To fully explore the connective relationships, we design
dual-GCN-based meta-channels to extract optimal graph struc-
tures from topology and feature spaces, respectively. Each
meta-channel contains three fundamental modules. Specifi-
cally, the global exploration (GE) module aims to collect
global hidden connections according to the supervision of
the training process. The GSL module endeavors to update
graph structures based on local and global information. The
Graph convolution (GCNconv) module is to learn a node-level
representation from learnable graph structures and features
for the downstream task. To better clarify the GSL, Fig. 1
intuitively exhibits its details. We call the initial adjacency
matrix and the adjacency matrix learned by the GE module
the local graph and global graph, respectively. Considering
that the global graph may contain undesired connections
between nodes, a Mask(·) function, which adaptively refines
the edges during the model training, is employed to further
adjust the adjacency matrix. Then an attention mechanism
is developed to fuse local and global information to obtain
a more comprehensive graph. Furthermore, on the basis of
LGCN-SGIB, we design an SGIB as an optimization objective
function, which constrains the mutual information between
inputs, node embeddings, and predictive representations to
suppress the data noises and maximize the consistency of
effective information, thus guiding the whole framework.

The main contributions of this article are summarized as
follows.

1) Propose a learnable dual-meta-channels-based GCN
framework to address graph data that contain noises
from topology and feature spaces, which considers both
local and global neighbor connections.

2) Design a GSL strategy to dynamically update graphs and
integrate it with GCN for representation learning.

3) A differentiable SGIB is proposed, which alleviates the
interference of noises from original data and enhances
the correlations between meta-channels.

4) The proposed approach is applied to semisupervised
node classification tasks, and substantial experiments
on benchmark datasets demonstrate the superiority of
LGCN-SGIB compared with the state-of-the-arts.

The rest of this article is organized as follows. Related
works on the GCN and information bottleneck are reviewed in
Section II. Section III elaborates the proposed LGCN-SGIB.
Section IV verifies the proposed framework via substantial
experiments. Conclusions and future work are presented in
Section V.

II. RELATED WORK

In this section, some existing studies relevant to our work
are reviewed, starting with an overview of the GCN and then
focusing on the introduction of the information bottleneck.

A. Semisupervised Learning With the GCN

Semisupervised learning [31] has been an attractive topic
recently. The operating mechanism of semisupervised learning
endeavors to leverage limited labeled signals with massive
unlabeled samples to guide the model training. Semisupervised
learning has been universally applied in various domains.
For example, Guan et al. [32] introduced a semisupervised
metapath-guided framework to solve the attribute entities
problem for personalized compatibility modeling. Luo et al.
[33] developed a semisupervised feature analysis method to
learn robust features for recognition tasks. Guan et al. [34]
proposed a bi-directional heterogeneous graph hash framework
to improve efficiency for recommendation tasks. Among them,
graph-based semisupervised learning has gained widespread
attention due to its remarkable expressive capabilities.

Based on this, as a powerful tool of graph-based semisu-
pervised learning, the GCN is remarkably promising in graph
neural networks. Generally, each layer of the propagation rule
in the GCN is formulated as

GCNconv2(A, X) = σ(AX2) (1)

where 2 is a trainable parameter of the GCNconv module,
σ is a nonlinear activation function, and A is the renormal-
ized adjacency matrix. The GCN is capable of aggregating
feature information from neighbors, which facilitates learning
a discriminative representation for specific tasks. Owing to
the powerful effectiveness of the GCN, numerous extensions
and variants of the GCN [35], [36], [37], [38] have achieved
optimal performance for semisupervised classification tasks.
A key idea of GCNs is exploring the consistency of both
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Fig. 2. Architecture of the proposed framework, which aims to solve semisupervised node classification problems. Concretely, as a supervised signal, the
GE module is employed to explore connective relationships in the global space. The GSL module endeavors to activate the relations in global learning and
refine the graph structure on local and global information. After that, GCNconv modules are utilized to learn node-level representations combined with the
SGIB to constrain mutual information for classification tasks.

feature and topology graph channels to enhance the expres-
sivity of node embeddings. For instance, Xu et al. [39]
developed a dual-GCN-based deep feature aggregation path
framework to extract high spatial information for classifica-
tion tasks. Wang et al. [40] employed two-channel GCNs
to explore potential information from feature and topology
spaces in semisupervised node classification tasks. Some state-
of-the-arts have focused on structural learning to improve the
capabilities of GCNs to discriminate between nodes on graphs.
For example, Min et al. [41] presented a semisupervised
GCN-based framework that applied residual convolutions and
scattered transformations to enhance higher-order regularity on
graphs. Wu et al. [42] simplified the GCN by precomputing a
high-order weighted matrix and removing the nonlinear acti-
vation function to approximate the propagation of multilayer
GCNs. Several works have attempted to utilize self-supervised
learning to solve the limitation of insufficient labeled signals.
Wan et al. [29] employed a semisupervised loss on the
GCN-based framework to enrich the potential information
from unlabeled samples. Sun et al. [43] utilized a multistage
GCN framework that generated extra pseudo-supervised infor-
mation in the downstream task to alleviate the limitation of
supervised signals.

Although these GCN-based semisupervised methods have
gained remarkable achievements, they still suffer from the
shortage of using fixed graphs with noises, which may cause
undesired feature propagation and could not dynamically
handle global information produced by the training process,
resulting in suboptimal prediction classification. Since it is
essential to learn optimal graph structures [44] for semisuper-
vised node classification tasks, it is still a great challenge to

adaptively explore GSL and alleviate the disruption of noises
during model training.

B. Information Bottleneck

Information bottleneck is a critical principle in information
theory, which aims to employ mutual information as the
regularizer to balance between the original data and gener-
alization. The goal of the information bottleneck encourages
that the representation obtained from the original data contains
the maximal valid information for the target and excludes
the additional information that is irrelevant for prediction
tasks. To this end, the information bottleneck directly min-
imizes the mutual information between the original data x
and the obtained representation h and maximizes the mutual
information between h and the predictive representation y
simultaneously, formulated as

LI B = I(y; h) − βI(x; h) (2)

where I(·; ·) denotes the mutual information, β is a
Lagrangian parameter, and x, h, y denote vectors.

The information bottleneck has received significant atten-
tion in machine learning and deep learning. Recently, some
research studies have been proposed to integrate the informa-
tion bottleneck principle into structural learning to alleviate the
disruption of noises. Alemi et al. [28] designed a variational
estimation by approximating the distribution using a neural
network to the mutual information. Wu et al. [25] introduced
the information bottleneck for graph learning to capture the
minimal sufficient information from graph-structured data.
Yu et al. [45] solved a subgraph recognition problem by
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estimating the mutual information in irregular graph data.
Yang et al. [46] employed the information bottleneck for
the heterogeneous graph neural network for semisupervised
classification tasks. Sun et al. [30] advanced the information
bottleneck principle that optimized both the graph structure
and the graph representation to facilitate training stability and
efficiency.

Nevertheless, although these approaches have successfully
employed the information bottleneck for various applications,
they did not consider evaluating the consistency of diverse
channels, which may lead to weak correlations between chan-
nels, thereby obtaining undesired performance.

III. PROPOSED METHOD

A. Overview and Notations
At the beginning of this section, some basic notations used

in this article are clarified. Given graph data, the node feature
matrix is denoted as X = [x1; x2, . . . , xn] ∈ Rn×d , where xi is
the feature vector of the i th node, n is the number of samples,
and d is the feature dimension. Specifically, there are l labeled
nodes, and the remaining u = n − l samples are unlabeled
with l ≪ u. The adjacency matrix is denoted as At

∈ Rn×n ,
with At

i j = 1 representing that there exists a connection
between the i th node and the j th node and 0 otherwise. Ãt

is a renormalized matrix. Y ∈ Rn×c is a label matrix, with
c being the number of class and Yi j = 1 representing the
i th node belongs to the j th class. Given the graph represen-
tation Gt (At , X), this article mainly focuses on dynamically
extracting the local and global connective relationships by
decreasing the interference of noisy information to obtain
optimal graph structures, which are further used to extract the
node-level representation Z ∈ Rn×c for the semisupervised
node classification tasks.

B. Learnable GCN
To obtain optimal graph structures and better apply them to

the node classification tasks, a learnable GCN-based frame-
work that jointly explores local and global connections, as well
as alleviates the noises hidden in data is proposed. As shown in
Fig. 2, the whole framework contains three primary modules:
the GE module, the GSL module, and the GCNcnov module.
Concretely, as a supervised signal, the GE module utilizes the
k-means clustering method combined with a screening mech-
anism to generate connections with global information. The
GSL module aims to refine graph structures on local and global
information during the inference process. The GCNcnov
module is employed to learn the node-level representation
according to the connective pattern and node embeddings.
In addition, to fully explore the correlated information, dual
meta-channels are designed to extract the optimal topology
graph structure and the feature graph structure from topology
and node features, respectively. Each meta-channel includes a
GE module, a GSL module, and two GCNcnov modules, and
an optimization objective function is designed to guide the
whole training by combining the SGIB. To better explain the
proposed LGCN-SGIB, we first give its overall process, then
we elaborated GE module in Section III-C, GSL module in
Section III-D, SGIB in Section III-E, and the module training
in Section III-F.

The latent feature information A f is extracted from the
raw features by k-nearest neighbor algorithm (kNN), and,
therefore, the (i, j)th element of A f is denoted as

A f
i j =

{
1, x j ∈ kNN(xi ) or x j ∈ kNN(xi )

0, otherwise
(3)

where kNN(xi ) is the set of the k nearest neighbors of xi .
Then, we renormalize Ã f

= D̃−(1/2)(I + A f )D̃−(1/2), where
D̃i i =

∑
j Ã f

i j ∈ Rn×n is the degree matrix derived from the
self-connection matrix Ã f . Then, the feature adjacency matrix
A f and the raw features X form the feature graph G f (A f , X).
The whole procedure is shown below.

Given Gt (At , X) and G f (A f , X), we employ two GCNconv
modules. Specifically, taking the topology metapath as an
example, the node embedding of the first GCNconv module is
defined as

Ht
= GCNconv21(Â

t , X) (4)

where 21 is the parameter of the GCNconv module to extract
the common information from the topology space.

To obtain the final predictive representations, the second
GCNconv module is employed with the parameter 22, denoted
as

Zt
= GCNconv22(Â

t , Ht ). (5)

It is noted that both the topology and feature metapaths
share the same parameters in GCNconv modules. Besides,
Ât

= Ãt and Â f
= Ã f when GCNconv modules are in the first

iteration. Then, we employ a GE module to explore the global
relationship between topology and feature spaces, defined as

Ā∗
= GE

(
H∗, Z∗

)
, ∗ ∈ {t, f }. (6)

Finally, we utilize a GSL model to obtain the learned
topology graph and the learned feature graph, formulated as

Â∗
= GSL2∗

(
Ā∗, H∗, Z∗

)
, ∗ ∈ {t, f } (7)

where 2∗ is the trainable parameter of the GSL module. The
final node predictive representation is defined as

Z = Zt
+ αZ f . (8)

Furthermore, an SGIB module is employed to conduct the
whole learnable GCN framework by acquiring the minimal
sufficient graph structures through constraining the mutual
information of both the same meta-channel and different meta-
channels, thereby decreasing the interference of noises and
optimizing the consistency of homogeneous representations.
Specific details are elaborated as follows.

C. Global Exploration

As a supervised signal, the GE module aims to generate
global connective relationships according to the supervision of
both the node embeddings and the predictive representations.
Therefore, before exploring global information, we execute
the k-means method on node embeddings to obtain global
relationships on topology and feature spaces and explore
the weak labels of each node to further screen nodes for
constructing the global graphs. Taking topology meta-channel
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as an example, we first cluster all nodes into distinct categories
based on the geometric criterion using the k-means algorithm
and learn a centroid matrix C̄t

∈ Rc×m as

C̄t
= kmeans(Ht ). (9)

For each of the lth clusters in the topology meta-channel,
the computation of the weak label of the cluster is

ȳt
l = arg min

i

∥∥c̄t
l − ct

i

∥∥2
(10)

where c̄t
l is the centroid of cluster l, ct

i is the centroid in labeled
data with i ∈ [c], and ȳt

l is the weak labels of nodes belonging
to the cluster l forming weak label set Ȳt .

1) Screening Mechanism: The target of the screening mech-
anism is to filter out more reliable nodes to construct global
graphs according to the obtained weak labels and the predictive
labels from Zt and Z f . We screen the more reliable nodes
by aligning the weak label Ȳt for the topology meta-channel
and the predictive labels of the output layer for the topology
meta-channel to maximize the consistency between meta-
channels, that is,

X̂t = Append
(
1[ȳt

i =ŷt
i ]

xi

)
, i ∈ [n] (11)

where Append(·) function expends the node xi to set X̂t and
the 1[·] is an indicator function that equals to 1 if satisfying
the condition of [·], and 0 otherwise. X̂t denotes a node set
of where the nodes meet [·], and ȳt

p and ŷt
p = arg max j zt

p
are the weak labels and predictive label of the pth node,
respectively. Then, a global topology graph Āt is built by X̂t ,
where the nodes with the same weak labels are connected
when the value is equal to 1. As for the feature meta-channel,
the global feature graph Ā f is also created like the above
process.

D. Graph Structural Learning

Although graphs Āt and Ā f are built by the filtered reliable
nodes, there may be some undesired connections between
nodes. Based on this, the goal of the GSL module is to preserve
the higher important connections without destroying the graph
structures and then fuse the local and global connections.
Since it is difficult to evaluate the degree of importance
between connections, a natural idea is to adjust these weights
of connections adaptively according to the training process.
Toward this end, we design a learnable mask function Mask(·)

to adjust the connective relation between the i th node and the
j th node, denoted as

A∗
= Ā∗

⊙
(
ReLU(S − 8) + ReLU(S⊤

− 8)
)
, ∗ ∈ {t, f }

(12)

where ⊙ is the Hadamard product, S ∈ Rn×n represents the
shared learnable coefficient matrix to control the weight for
each edge, and 8 ∈ Rn×n denotes the shared coefficient bias
matrix to reduce local noises. To ensure the nonnegativity of
the coefficients, Sigmoid function is applied to S, S⊤, and
8, respectively. Therefore, a connective relationship exists
between the i th node and the j th node when the coefficient
of the i th node or the coefficient of the j th node is greater

than the bias value, thereby achieving the purpose of adap-
tively selecting the right connections and inhibiting the wrong
connections through the model training.

Furthermore, plunging into the attention mechanism to learn
the importance of each node for the fusion of local and global
connections, the learned graphs are finally defined as

Â∗
= Attention

(
Ã∗, A∗

)
, ∗ ∈ {t, f } (13)

where the linear network is adopted for the attention mecha-
nism to learn the importance of nodes.

E. Semisupervised Graph Information Bottleneck

Considering that the graph structures may have noisy data,
which may lead to poor performance for the downstream task.
Based on this, we extend the information bottleneck that learns
minimal sufficient representation using the mutual information
to the SGIB that is combined with the limited labeled signals
to conduct the proposed model. The target of SGIB is to
learn minimal sufficient graph representations by constraining
as much irrelevant information to the target task as possible
and reserving the maximal useful information from label
information. Meanwhile, we also strengthen the consistency
between node embeddings from distinct meta-channels by
maximizing their mutual information. Hence, the objective
function of SGIB can be written as

LS =
(
I
(
At

; Ht)
+ I

(
A f

; H f ))
− βI

(
Ht

; H f )
− γ

(
I
(
Zt

; Ht)
+ I

(
Z f

; H f )) (14)

where the first term aims to minimize the information Ht

(and H f ) from data Ât (and Â f ), the second term maximizes
the embeddings between the distinct meta-channels, while the
third term maximizes the mutual information between the node
embedding Ht (and H f ) and the predictive representation Zt

(and Z f ), where β and γ are hyperparameters to balance all
terms.

1) Estimation: To optimize the parameters of the frame-
work, we need to estimate these mutual information. Based on
this, for the first term in (14), we transform it into minimizing
the upper bound to obtain the minimal sufficient representa-
tions. Furthermore, since the node embeddings and the original
graph structures have a dependent relationship denoted as
{At

→ Ât
→ Ht

} and {A f
→ Â f

→ H f
} according to

the Markov chain principle, we have I(At
; Ht ) ≤ I(At

; Ât ).
Similarly, we also obtain I(A f

; H f ) ≤ I(A f
; Â f ). Based on

this, the upper bound is computed as

Î(At
; Ht ) ≤ Î(At , Ât )

= DK L
(

p(Ât
|At ) || r(At )

)
. (15)

The above specific derivation is provided in the Appendix.
To specify the upper bound, we assume that both p(Ât

|At )

and r(At ) are subject to Bernoulli distributions, and at
i j has

the half probability that equals to 0 or 1, defined as

Î(At
; Ht ) ≤

n∑
i=1

n∑
j=1

DK L
(
Bern(ât

i j ) ||Bern(0.5)
)
. (16)
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Analogously, Î(A f , H f ) satisfies

Î(A f
; H f ) ≤

n∑
i=1

n∑
j=1

DK L

(
Bern(â f

i j ) ||Bern(0.5)
)
. (17)

To maximize the mutual information of I(Ht
; H f ), we also

transform the problem into maximizing the lower bound
of I(Ht

; H f ). Considering that the labeled information
encourages the performance of the node classification task,
we propose a method to estimate the lower bound of the
mutual information combined with the known labeled signals.
Specific theoretical derivation is shown in the Appendix.

Lemma 1: Given a latent variable M and two random
variables X1 and X2, we have

I(X1; X2) ≥ Eq(X1,X2|M=1)

[
log q(M = 1|X1, X2)

]
+ Eq(X1,X2|M=0)

[
log q(M = 0|X1, X2)

]
(18)

where M = 1 denotes that (x1, x2) belongs to the same class
sampling from the joint distribution and M = 0 represents
that (x1, x2) belongs to different classes from the marginal
distribution.

Based on this, we apply the above lemma to (Ht , H f ).
However, considering that the estimation of the distributions
q(M = 1|X1, X2) and q(M = 0|X1, X2) are difficult, so we
introduce a bivariate function g(Ht , H f ) → {0, 1} to q(M =

1|X1, X2). Similarly, q(M = 0|X1, X2) is substituted by
(1 − g(Ht , H f )) → {0, 1}.

Consequently, the right term of (18) is described as

Î(Ht , H f ) = Eq(Ht ,H f |M=1)

[
log g

(
Ht , H f )]

+ Eq(Ht ,H f |M=0)

[
log

(
1 − g

(
Ht , H f ))]. (19)

In addition, the bivariate function g(Ht , H f ) satisfies

g
(
Ht , H f )

=
1
2l

l∑
i=1

∑l
j=1 1[yi =y j ] exp

〈
ht

i , h f
j

〉∑l
k=1 exp

〈
ht

i , h f
k

〉
+

1
2l

l∑
j=1

∑l
i=1 1[y j =yi ] exp

〈
h f

j , ht
i

〉∑l
k=1 exp

〈
h f

j , ht
k

〉 (20)

where h∗

i denotes the i th vector of H∗, with ∗ ∈ [t, f ] and ⟨·⟩

denotes the inner product.
For the third term of (14), we aim to maximize the lower

bound of the mutual information Î(Zt
; Ht ) and Î(Z f

; H f )

instead of computing the minimal −(I(Zt
; Ht )+I(Z f

; H f )).
Here, MINE [47] is employed to estimate the lower bound of
mutual information as

Î
(
Zt

; Ht)
= sup

�t

Ep(Zt ,Ht )

[
T�t

]
− log

(
Ep(Zt )p(Ht )

[
eT�t

])
(21)

where Ep(·) means the expectation of random variables in p(·),
p(Zt , Ht ) is the joint samples, p(Zt ) and p(Ht ) stand for the
marginal ones, and T�t = T�t (Zt , Ht ) denotes a multilayer
perceptron with parameter �t . Similarly, the counterpart is

Î
(
Z f

; H f )
= sup

� f

Ep(Z f ,H f )

[
T� f

]
− log

(
Ep(Z f )p(H f )

[
eT� f

])
. (22)

F. Model Training

As described in Section III-E, the objective function of
SGIB is finally obtained by

LS =
(
Î
(
At

; Ht)
+ Î

(
A f

; H f ))
− βÎ

(
Ht

; H f )
− γ

(
Î
(
Zt

; Ht)
+ Î

(
Z f

; H f )). (23)

Furthermore, since the proposed model aims to solve the
node classification tasks, a cross-entropy loss is applied to
evaluating the distance between the predictive output Z and
the ground truth Yl , denoted as

LC = −

l∑
i=1

c∑
j=1

Yl
i j lnOi j . (24)

Therefore, the overall loss function of the proposed method is
defined as

L = LS + LC . (25)

We also analyze the computation of LGCN-SGIB. In gen-
eral, the network of LGCN-SGIB can be divided into the
following steps: GE, GSL, and graph convolution. Taking
topology metapath as an example, the GE process consumes
O(nct + nc2), and GSL costs O(n2

+ n2 f + n f ), where f is
the number of hidden units. Herein, t denotes the number of
iterations. The GCNconv process takes O(n2d+ndf). Both the
topology metapath and the feature metapath can run efficiently
on GPU hardware parallelly. Assuming that f ≈ c and c ≪ n,
the overall time complexity of forward calculations in each
iteration is O(n2d).

Furthermore, to better clarify the procedure of the proposed
framework, we elaborate on the implementation of the whole
network, shown in Algorithm 1.

IV. EXPERIMENTS

In this section, we compare the proposed LGCN-SGIB with
nine methods on eight real-world graph datasets. We first
briefly describe the experimental setup and then the semisu-
pervised node classification performance of LGCN-SGIB
is presented. Finally, comprehensive experiments including
parameter sensitivity, ablation study, and convergence valida-
tion are conducted to analyze its effectiveness and superiority.

A. Experimental Setup

1) Datasets: Eight benchmark datasets are utilized to per-
form semisupervised node classification tasks. These graph
datasets are shown in Table I. Detailed descriptions are given
as follows.

1) Flickr is an image and video hosting dataset that forms
links between shared Flickr public images, among which
the nodes represent users and the edges represent their
relationships. All the nodes are divided into nine classes
according to the interests of users.

2) ACM is a dataset whose nodes stand for the papers and
edges stand for the two papers having the same author.
All the papers are divided into three classes: citation
networks, paper contents, and other data integration
studies.
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Algorithm 1 Learnable GCN With SGIB (LGCN-SGIB)
Require: Graph Gt (At , X), label matrix Yl , epoch number 0.
Ensure: Predictive output Z.

1: Initialize A f
= kNN(X) by Eq. (3);

2: Initialize Ât
= Ãt , Â f

= Ã f ;
3: for epoch ∈ {1, . . . , 0} do
4: for ∗ ∈ {t, f } do
5: if epoch > 1 then
6: # Global Exploration.
7: C̄∗

= kmeans(H∗) by Eq. (9);
8: Screen nodes X̂∗, and obtain weak-labels Ŷ∗ by

Eq. (11);
9: if xi , x j ∈ X̂∗ then

10: Ā∗

i, j = 1 if satisfying ŷ∗

i = ŷ∗

j ;
11: end if
12: Forward propagation in the model;
13: # Graph Structural Learning.
14: A∗

= Mask(Ā∗) using (12);
15: Â∗

= Attention(Ã∗, A∗) using Eq. (13);
16: end if
17: # Model Training.
18: H∗

= GCNconvΘ1(Â∗, X) by Eq. (4);
19: Z∗

= GCNconvΘ2(Â∗, H∗) by Eq. (5);
20: end for
21: Z = Zt

+ αZ f by Eq. (8);
22: L = LS + LC by Eq. (25);
23: Back propagation L to update model weights;
24: end for
25: return Predictive output Z.

TABLE I
STATISTICAL SUMMARY OF ALL GRAPH DATASETS

3) BlogCatalog is a social network from a BlogCatalog
website. The nodes are made up of the keywords of the
user profiles and the edges denote the authors having the
same topic categories. All the nodes are divided into six
classes.

4) Cora is a citation network dataset, where nodes stand
for papers and edges stand for their citations between
each other. It consists of seven classes and 5429 edges.

5) Film is a film social network dataset containing
7600 nodes and 15 009 edges, which is divided into five
classes.

6) Citeseer is a research paper citation dataset with nodes
representing publications and edges representing citation
links, where nodes are divided into six categories.

7) UAI is a dataset that has 3067 nodes and 28 311 edges.
Each feature dimension is 4973, and the nodes are
divided into 19 classes.

8) CoraFull is a larger version of the well-known Cora
dataset consisting of 19 793 nodes and 65 311 edges.
All the nodes are divided into 70 classes.

2) Baselines: To validate the proposed framework, we com-
pare our approach with the following state-of-the-art methods.

1) GCN [11] is a graph convolutional network applying
to the semisupervised classification tasks that obtain
information by aggregating messages from neighbors.

2) kNN-GCN is a baseline that employs a feature graph
constructed by the kNN algorithm to input the GCN for
the classification tasks.

3) GAT [48] is a graph attention network that applies an
attention network to specifying weights for different
nodes in neighbors to learn node representations.

4) GLCN [27] is a GCN that integrates both graph learn-
ing and GCNconv simultaneously in a unified network
architecture to learn a graph representation.

5) Scatter-GCN [41] is a semisupervised graph neural
network that introduces geometric scattering transforms
and residual convolutions to alleviate over-smoothing
problems for node classification tasks.

6) AM-GCN [40] is a multichannel GCN framework that
explores GCNconv operation on both topology and
feature spaces for the node classification tasks.

7) CG3-GCN [29] is a contrastive GCN-based framework
that designs a semisupervised contrastive loss to learn
transductive node representation.

8) SSGC [49] is a neural network extension of the Markov
diffusion kernel that captures the global and local
contexts of each node simultaneously for the node
classification downstream tasks.

9) NWR-GAE [50] employs neighborhood Wasserstein
reconstruction to build the entire neighborhood infor-
mation regarding both proximity and structure for node
classification tasks.

3) Parameter Settings: In the experiment, all parameter
settings of baselines are suggested by their papers. As for the
proposed LGCN-SGIB, we shuffle all datasets by randomly
selecting {20, 40, 60} labeled nodes per class for training, and
500 and 1000 samples for validation and testing, respectively.
The Adam optimizer is applied to the learnable parameters
with the learning rate as 1 × 10−2 and weight decay as
5 × 10−4. In the proposed framework, we employ kNN to
initialize the feature adjacency matrix A f , with k ranging from
3 to 50. Besides, the attention mechanism in the GSL module
is utilized by a fully-connected neural network, where the
hidden neural number is {n, 16, 1}. In the attention mechanism,
Tanh(·) is used as activation in the first layer, and Softmax(·)

is used in the last layer. We train two GCNconv modules
in the topology and feature meta paths, respectively, where
the first GCNconv employs ReLU(·) as neural activation with
the hidden dimension being 16, and the second GCNconv
adopts Softmax(·) as neural activation with the output dimen-
sion being c. Two well-known metrics including accuracy
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TABLE II
NODE CLASSIFICATION PERFORMANCE (ACC% AND F1%) OF ALL COMPARED METHODS WITH 20/40/60 LABELED PER CLASS ON EIGHT DATASETS,

WHERE THE BEST RESULTS ARE HIGHLIGHTED IN RED AND THE SECOND BEST RESULTS ARE HIGHLIGHTED IN BLUE

(ACC) and F1-score (F1) are employed for the performance
evaluation. The experiments are conducted under the scenario
of 20 labeled samples per class as the training set, without
otherwise specified.

B. Semisupervised Node Classification
1) Performance Comparison: We conduct substantial

experiments comparing LGCN-SGIB with the selected nine
approaches in semisupervised node classification tasks. The

performance of different methods with varying labeled training
samples is reported in Table II. The experimental results show
that LGCN-SGIB performs remarkably on all datasets, while
the compared methods take advantage of different datasets,
respectively. This observation demonstrates that the proposed
framework achieves optimal classification performance, indi-
cating the superior capability of denoising and GSL. Compared
with the GCN, kNN-GCN, and AM-GCN, the proposed
method is superior on all datasets. This may be attributed
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Fig. 3. T-SNE visualization of node classification results of compared methods on BlogCatalog.

to that the compared baselines suffer from the interference
of noises in data samples during model training, resulting
in undesired performance. Instead, LGCN-SGIB can flexibly
refine discriminative graphs, which benefit the downstream
tasks through backpropagation and make the networks more
robust to noises by learning minimal sufficient representations
and filtering useless information. Furthermore, it is noted that
GLCN also exhibits node classification performance. Never-
theless, the proposed framework still significantly surpasses
GLCN by an average of 14.51%. The reason may be that
GLCN takes noisy samples into account when adaptively
constructing neighborhood structures, leading to insufficient
feature propagation in incorrect topology patterns. While
LGCN-SGIB gains stronger graph representations under the
guidance of the GSL module and the SGIB principle. For the
rest GCN-based methods, LGCN-SGIB also behaves the best,
indicating that the proposed framework reasonably obtains
more useful sufficient information from the original graphs and
learns more valid node representations through the supervision
of the GE module, GSL module, and SGIB principle. Overall,
LGCN-SGIB can remarkably achieve the best accuracy under
different labeled ratios. The results validate that our method
can steadily improve performance regardless of whether the
information in the original structure is useful or redundant.

2) Visualization of Classification: To intuitively show the
classification performance, Fig. 3 presents scatter diagrams
of all algorithms on the BlogCatalog dataset with 20 labeled
samples per class. From the figures, we can observe that most
compared baselines generally succeed in learning separable
node features, while some methods mix the nodes belonging to
different classes. GCN, SSGC, and the proposed LGCN-SGIB
obtain higher classification accuracy and have a stronger
ability to assign more accurate class labels. LGCN-SGIB
performs even better with closer intraclass correlations and
farther extraclass correlations, which may be attributed to
the SGIB that alleviates the interference of noises in the
original data and strengthens the consistency of both the same
meta-channel and different meta-channels. These observations
verify the superiority of node representation learning ability
for the proposed LGCN-SGIB.

Fig. 4. Visualization of the adjacency matrix A f (left) and the adjacency
matrix Â f (right) learned by LGCN-SGIB in feature metapath on the Citeseer
dataset, where darker colors are the higher weighted values of matrices and
red boxes highlight disappeared edges.

3) Refined Adjacency Matrix: Fig. 4 presents the visual-
ization of the partial initial adjacency matrix and adjacency
matrix learned by LGCN-SGIB in the feature metapath. It can
be seen that some connections in the learned adjacency
matrix diminish or disappear under the guidance of the SGIB
principle, thereby making graphs more sparser and robust.
Furthermore, compared with the initial structure, the adjacency
matrix refined by the SGIB principle is relatively pure, which
is beneficial for node embedding learning. The decent perfor-
mance also favors the superiority of LGCN-SGIB.

C. Module Analysis

1) Convergence Validation: Fig. 5 illustrates the curves
of LGCN-SGIB in terms of train loss, valid loss, and valid
accuracy under selecting 20 labeled samples per class for the
training set. We have the following observations. With the step
size of 0.01, it is evident that both train loss and valid loss
decrease and eventually converge within 100 iterations on most
datasets. Besides, the accuracy of the validation set generally
grows and tends to be convergent. Nevertheless, the valid loss
on the Film dataset slightly rises with an increasing number
of training iterations, which may be reduced to the instability
of the primary model. In this article, we select the optimal
model with the lowest valid loss value to perform the node
classification prediction on the test set.
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Fig. 5. Training loss (green), valid loss (orange), and valid accuracy (purple) on all datasets. (a) Flickr. (b) ACM. (c) BlogCatalog. (d) Cora. (e) Film.
(f) Citeseer. (g) UAI. (h) CoraFull.

Fig. 6. Row-normalized confusion matrix from the test set of the UAI dataset, where values represent the probabilities of the corresponding categories.

2) Error Analysis: To investigate the reason for the mis-
classification across all categories, we conducted additional
experiments on the UAI dataset by analyzing the difference
between the ground truth and the prediction label distributions.
As shown in Fig. 6, we visualize the true class and predicted
class by a confusion matrix and enumerate the number of
nodes in each category. The top five misclassification cate-
gories {C1, C2, C6, C8, C9} are marked by dark blue. From
the figure, we can observe that classes with more nodes have
a higher classification error probability. The rationale behind
this phenomenon is that classes with more nodes also possess
more edges connecting them to other nodes. Consequently, the
likelihood of anomalous edge interference increases, leading
to undesired feature propagation and suboptimal performance.
The observation indicates that it is challenging to predict
classes with higher edge densities compared to other subtypes.

3) Parameter Sensitivity: To illustrate the performance
variations of the proposed method under different settings,
parameter sensitivity analysis is conducted with respect to
various hyperparameters β and γ , as shown in Figs. 7 and 8.
In our model, β and γ are used to balance the weights of
two terms in the objective function of the SGIB principle.
We fix one of the hyperparameters at the best value and
modify the other to observe the influence on the test set.
From the figures, we can conclude that the selection of
these two hyperparameters has a remarkable influence on
the classification performance. Specifically, the accuracy and
F1-score are at lower levels when the hyperparameter β is too
large, and they tend to be stable when β is less than 1. Based
on this, the suggested value for β ranges from 1 × 10−5 to
1 × 10−1. In addition, the classification performance of the
model is relatively stable with different values of parameter γ .
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Fig. 7. Parameter sensitivity (ACC%) of the proposed method with respect to hyperparameters β and γ on all datasets. (a) Flickr. (b) ACM. (c) BlogCatalog.
(d) Cora. (e) Film. (f) Citeseer. (g) UAI. (h) CoraFull.

Fig. 8. Parameter sensitivity (F1%) of the proposed method with respect to hyperparameters β and γ on all datasets. (a) Flickr. (b) ACM. (c) BlogCatalog.
(d) Cora. (e) Film. (f) Citeseer. (g) UAI. (h) CoraFull.

Generally, smaller or larger values of γ lead to poor perfor-
mance, and satisfactory performance is achieved with γ in a
moderate range. Therefore, the suggested value of γ ranges in
[0.5, 0.7].

4) Ablation Study: To intuitively validate the contribution
of the proposed modules, we test the classification accuracy
and F1-score of LGCN-SGIB with its variants on all datasets,
shown in Table III. Our model can be divided into three
components: the GE module, the GSL module, and the SGIB
module. We fist utilize the GCN as a baseline and then grad-
ually stack the proposed modules to analyze the effectiveness.
It is worth noting that the proposed framework employs SGIB

loss and cross-entropy loss as the loss function, and the rest
variants employ cross-entropy loss as an objective function.
From the table, we can observe that the accuracy goes up
when the modules are stacked one by one. In addition, it is
clear that using one of the three individually leads to a smaller
performance improvement, while it achieves optimal accuracy
when integrating all of them. This validates that LGCN-SGIB
obtains more desired graph structures from local and global
perspectives for promoting effective feature propagation. Fur-
thermore, compared with LGCN-SGIB, these variants without
the guidance of the SGIB principle neglect to minimize the
redundant information from the initial structures, which means
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TABLE III
ABLATION STUDY (ACC% AND F1%) OF THE PROPOSED METHOD ON ALL DATASETS

that the learned representation may be severely affected by the
noises from the original graph. On the contrary, the utilization
of SGIB aims to minimize the mutual information between
node representations and the initial structure, which alleviates
the interference of perturbations from the original data and
improves the consistency of meta-channels.

V. CONCLUSION

In this article, we proposed a learnable GCN framework
named LGCN-SGIB to cope with the node classification prob-
lem, which built dual-meta-channels to dynamically explore
potential graph information from both topology and feature
spaces. We first employed the GE module as a supervised
signal to fully extract connective relationships from hidden
spaces. Then the GSL module was employed to adaptively
learn optimal graph structures deriving from global and local
information. Finally, the SGIB principle was conducted to
evaluate the mutual information of the same and different
meta-channels to enhance the consistency of valid information
while mitigating the interference of noises, simultaneously.
The mutual information between graph structures and predic-
tive outputs evaluated the number of learned graph structures,
promoting the interpretability of the proposed framework.
Substantial experimental results demonstrated the effectiveness
and superiority compared with state-of-the-art models.

In this work, we only focus on denoising the topology and
feature metapaths in tLGCN-SGIBhe centralized scenarios.
However, in real-world applications, it is important to protect
data privacy in distributed environments. Since SGIB can
extract minimal sufficient information, it would be urgent to
investigate whether the sensitive information implied in data
could be removed for fairness. Therefore, in future work,
we will explore a theoretical analysis of the privacy guarantee
provided by this framework.

APPENDIX

A. Proof of Lemma 1

We restate Lemma 1, which is in the fourth paragraph of
Part E, Section III.

Lemma 1. Given a latent variable M and two random
variables X1 and X2, we have

I(X1; X2) ≥ Eq(X1,X2|M=1)

[
log q(M = 1|X1, X2)

]
+ Eq(X1,X2|M=0)

[
log q(M = 0|X1, X2)

]
(25)

where M = 1 denotes that (x1, x2) belongs to the same class
sampling from the joint distribution and M = 0 represents
that (x1, x2) belongs to different classes from the marginal
distribution.

Proof: Since M = 1 represents that (x1, x2) have the same
class that derives from the joint distribution, and, therefore,
q(X1, X2|M = 1) denotes the joint distribution equaling to
q(X1, X2). Similarly, q(X1, X2|M = 0) equals to q(X1)q(X2)

sampling from the marginal distribution. Meanwhile, given the
known conditions, we have q(M = 1) = (l/N ) and q(M =

0) = (N − l/N ) (l ≪ N ). Naturally, the poster probability of
M = 1 is defined as

log q(M = 1|X1, X2)

= log
q(X1, X2|M = 1)q(M = 1)∑

j∈[0,1]
q(X1, X2|M = j)q(M = j)

= log
q(X1, X2)

N−l
l q(X1)q(X2) + q(X1, X2)

= − log
(

N − l
l

q(X1)q(X2)

q(X1, X2)
+ 1

)
≤ − log

(
N − l

l

)
− log

q(X1)q(X2)

q(X1, X2)
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therefore, ignoring the constant, the mutual information is
written as

I(X1, X2) ≥ Eq(X1,X2|M=1) log q(M = 1|X1, X2).

To consider the poster probability of M = 0, simultaneously,
the mutual information I(X1, X2) is further written as

I(X1, X2) ≥ Eq(X1,X2|M=1) log q(M = 1|X1, X2)

+ Eq(X1,X2|M=0) log q(M = 0|X1, X2).

Since the known condition Eq(M=0|X1,X2) log q(M =

0|X1, X2) ≤ 0, (25) holds, completing the proof. □

B. Derivation of (15)

We restate to validate (15), which is in the second paragraph
of Part E, Section III

Î(At
; Ht ) ≤ Î(At , Ât )

= DK L
(

p(Ât
|At ) || r(At )

)
. (15)

Proof: Given mutual information I(At , Ât ), we have

I(At , Ât ) = Ep(At ,Ât )

[
log

p(At , Ât )

p(At )p(Ât )

]
= Ep(At ,Ât )

[
log

p(At
|Ât )

p(Ât )

]
= Ep(Ât |At ) p(At )

[
log

p(At
|Ât )

p(Ât )

]
=DK L

(
p(Y |At )||p(Ât )

)
p(Ât ).

Since the nonnegative of KL divergence and the value p(Ât ) ∈

[0, 1], we have

I(At , Ât ) ≤ Î(At , Ât )

=DK L
(

p(Y |At )||p(Ât )
)

which completes the proof. □
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