
Knowledge and Information Systems (2022) 64:1–34
https://doi.org/10.1007/s10115-021-01629-6

SURVEY PAPER

A review onmatrix completion for recommender systems

Zhaoliang Chen1,2 · Shiping Wang1,2

Received: 1 February 2021 / Revised: 9 November 2021 / Accepted: 12 November 2021 /
Published online: 16 January 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Recommender systems that predict the preference of users have attracted more and more
attention in decades. One of the most popular methods in this field is collaborative filter-
ing, which employs explicit or implicit feedback to model the user–item connections. Most
methods of collaborative filtering are based on matrix completion techniques which recover
the missing values of user–item interaction matrices. The low-rank assumption is a critical
premise formatrix completion in recommender systems, which speculates that most informa-
tion in interactionmatrices is redundant. Based on this assumption, a large number ofmethods
have been developed, including matrix factorization models, rank optimization models, and
frameworks based on neural networks. In this paper, we first provide a brief description of
recommender systems based on matrix completion. Next, several classical and state-of-the-
art algorithms related to matrix completion for collaborative filtering are introduced, most of
which are based on the assumption of low-rank property. Moreover, the performance of these
algorithms is evaluated and discussed by conducting substantial experiments on different
real-world datasets. Finally, we provide open research issues for future exploration of matrix
completion on recommender systems.

Keywords Matrix completion · Recommender systems · Collaborative filtering · Low-rank
learning · Matrix factorization

1 Introduction

The primary target of recommender systems is making recommendations for users to meet
their needs or tastes based on their past behavior, thereby significantly saving the time for
users to find useful information [1–3]. Rating is a typical user explicit feedback that visually
reflects how much a user likes a related item. A multitude of ratings that users left on the

B Shiping Wang
shipingwangphd@163.com

Zhaoliang Chen
chenzl23@outlook.com

1 College of Computer and Data Science, Fuzhou University, Fuzhou 350116, China

2 Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing,
Fuzhou University, Fuzhou 350116, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-021-01629-6&domain=pdf
http://orcid.org/0000-0001-5195-9682

2 Z. Chen, S. Wang

Internet come into being a vast matrix, which is employed by recommender systems to make
predictive recommendations. Since the number of items is huge, users tend to rate only a
small part of the items, which leads to the sparsity of matrices [4–6]. This problem brings
great difficulty in profiling users and items and has been a hot research issue for decades.
Huang et al. [7] dealt with this problem by applying an associative retrieval framework and
related spreading activation algorithms to explore transitive associations among users through
their past feedback. Moshfeghi et al. [8] presented a framework taking item-related emotions
and semantic data into concern to handle the sparsity problem in recommender systems.
Li et al. [9] proposed a cross-domain framework that transferred user–item rating patterns
from a dense auxiliary rating matrix in other domains to a sparse rating matrix in the target
domain, so that two datasets in different domains worked together to solve the problem of
sparsity. Implicit feedback is another useful information for recommender systems [10–12].
Although this type of feedback is not as clear as the explicit feedback, it is more common
on the Internet. For example, click records, shopping carts of shopping sites, and favorites
or forwardings of the articles are part of the implicit feedback [13]. Such feedback does not
necessarily reflect the preference of users; however, it promotes the modeling of users or
items and reduces the sparsity of matrix [14–16].

In general, there are correlations between different items or users, which can be measured
by user–item interaction matrices generated from explicit or implicit feedback [17]. Collab-
orative filtering (CF) [18–21] discovers these correlations in a data-driven manner to make
accurate recommendations and solve the sparsity issues. Matrix completion is extensively
applied in CF [22–25], which attempts to recover missing values in interaction matrices.
There are mainly two types of methods for CF with matrix completion: neighborhood-based
models (NBMs) and latent factor models (LFMs). NBMs compute similarities between users
to recommend items for a specific user according to ratings from other similar users. It is
also possible to recommend items similar to a known favorite item for the user by computing
the similarity between items. LFMs focus on profiling features of users and items and then
project them into low-dimensional vectors, which are also called latent factors. It is a com-
mon method to reap feature matrices by matrix factorization or singular value decomposition
(SVD) [26]. In some state-of-the-art methods, latent factors are obtained via neural networks
[27]. For example, Cheng et al. [28] proposed wide and deep learning which jointly trained
wide linear models and deep neural networks to improve recommender systems. Covington
et al. [29] applied deep neural network (DNN) on Youtube website recommendations. He
et al. [30] presented the neural network-based collaborative filtering (NCF) to express and
generalize matrix factorization.

Low-rank matrix is an essential assumption for matrix completion with LFMs, which
considers that most information in interaction matrices is redundant and can be compressed.
As shown in Fig. 1, only top 20% singular values record the most information of original
matrices in recommender systems. This motivates us to enforce low-rank property on inter-
action matrices. Existing methods have also proved the effectiveness of low-rank property in
solving sparsity issues [31–33].Many approaches have been investigated for low-rankmatrix
completion, including low-rank matrix factorization [34–37], nuclear norm heuristic, singu-
lar value thresholding (SVT) [38] and robust principal component analysis (Robust PCA)
[39,40], etc. In this paper, we provide a review on recommender systems with matrix com-
pletion techniques, most of which follow the low-rank assumption. It is noted that although
these methods are developed with the low-rank assumption, they do not necessarily minimize
the rank of the matrix explicitly. Therefore, the review is divided into several aspects, i.e.,
matrix factorization models, neural network models and rank minimization models. Only

123

A review on matrix completion for recommender systems 3

0 200 400 600 800 1000
The i-th singular value

0

100

200

300

400

500

600

700
M

ag
ni

tu
de

(b)

0 500 1000 1500 2000 2500 3000 3500 4000
The i-th singular value

0

200

400

600

800

1000

1200

1400

1600

1800

2000

M
ag

ni
tu

de

(a)
Top 20% singular values Top 20% singular values

Fig. 1 Singular values of rating matrices generated from two widely used datasets for recommender systems:
a MovieLens-100K and b MovieLens-1M, where top 20% singular values account for 51.10% and 55.97%
of the sum of all singular values, respectively

rank minimization methods optimize the rank function explicitly. The main contributions of
this paper are listed as follows:

– We look into the matrix completion approaches used in recommender systems, includ-
ing matrix factorization models, neural network models and rank minimization models,
which cover primary techniques of matrix completion-based recommender systems. The
advantages and drawbacks of these models are also analyzed.

– Substantial experiments on rating and top-k recommendation prediction that are typical
applications of recommender systems are conducted for the selected well-known and
state-of-the-art algorithms.

– According to the experimental observation,we analyze and summarize existingmodels of
recommender systems with matrix completion, and discuss the challenges and potential
research directions, which may bring insights for readers.

For the rest of this paper, we introduce algorithms for matrix completion methods used
in recommender systems in Sect. 2, including matrix factorization models, neural network
models and rank minimization models. In Sect. 3, we conduct substantial experiments with
these different types of models to compare the performance of various algorithms. Future
directions of recommender systems based on matrix completion and insights for researchers
are summarized and discussed in Sect. 4.

2 Matrix completionmethods

2.1 Problem formulation

In general, models of recommendation systems in the real world can be divided into two
types: rating prediction models and top-k recommendation models. Because recommender
systems are feedback-driven and most user feedback can be transformed into one or multiple
incomplete matrices, optimization methods on matrix completion can address recommender
system problems effectively. Consequently, most approaches preprocess the feedback data
at the beginning of algorithms so that matrix completion methods can be applied to rec-
ommender systems. First of all, we discuss rating tasks in recommender systems which

123

4 Z. Chen, S. Wang

Table 1 Explanations for commonly used mathematical symbols

Symbols Explanations

M The observed incomplete matrix

Ω The set containing observed user–item pairs

P , Q Latent factor matrices obtained from matrix factorization of M

pu Latent feature vector of user u (the uth row of P)

qi Latent feature vector of item i (the i th column of Q)

suv , si j User and item similarities

yui Rating value (or other forms of feedback) of user u on item i

L Loss or objective function

rank(X) The rank of matrix X

Y = UΣV SVD of matrix Y

σi The i th singular value of the matrix

predict missing values of a rating matrix. Given a set of users u ∈ {1, . . . ,m} and items
i ∈ {1, . . . , n}, the rating of user u on item i is denoted by yui . Massive ratings are trans-
formed into a matrix M ∈ R

m×n which corresponds to ratings of items rated by users. If all
observed user–item pairs are stored in the set Ω = {(u, i)|yui is observed} , the interaction
matrix M is defined by

Mui =
{
yui , (u, i) ∈ Ω,

null, (u, i) /∈ Ω,
(1)

or we can replace the unknown ratings with 0, that is,

Mui =
{
yui , (u, i) ∈ Ω,

0, (u, i) /∈ Ω.
(2)

In some top-k recommendation tasks, yui maybeother values ranging in [0, 1] representing
affinities of users.Matrix completionmethodsfill themissing values in a user–item interaction
matrix and provide top-k recommendation list according to the predicting values in thematrix.
Usually, most entries of the interaction matrix M are unknown because most users only rated
a tiny part of items. In this section, we look into some traditional and popular methods for
matrix completion in recommender systems. In the beginning of this section,wefirst provide a
table explaining commonly used mathematical symbols for better readability. Other method-
specific mathematical symbols, e.g., different regularization coefficients, are explained when
they first appear.

2.2 Matrix factorizationmodels

2.2.1 NMF

Matrix factorization is a popular and classical technique of CF for rating problems. It aims
to decompose the user–item rating matrix M into the user latent factors and item latent
factors that profile users and items accurately. In this subsection, we start from the well-
known nonnegative matrix factorization (NMF) algorithm which has proved to be effective
for learning a partial representation of the data [34,35]. Given a rating matrix M ∈ R

m×n ,

123

A review on matrix completion for recommender systems 5

1.2

1.5

1.4

1.0 1.8

1.0

0.4

0.9

1.4 0.7 1.1 0.9

1.6 1.2 1.5 1.6

3.0

3.5

3.0

2.0

2.0 2.5

2.5

3.0

4.0

3.0

2.0

Fig. 2 A simple example for NMF. The incomplete user–item interaction matrix is approximated by the
multiplication of two nonnegative matrices, one profiles the user latent features while the other one profiles
the item latent features

it considers the problem by finding nonnegative matrices P ∈ R
m×r and Q ∈ R

r×n that
follow M ≈ PQ, as illustrated in Fig. 2. Usually, the parameter r is set much smaller than
min(m, n) to promise low-rank property, so that themodel learns compressed representations
from the original matrix.

To measure the quality of the approximation, loss functions are defined to compute the
distance between two arbitrary nonnegative matrices A and B. One widely used loss function
is

L(A, B) =
∑
i j

(
Ai j − Bi j

)2
, (3)

which computes the square of the Euclidean distance [41]. The gradient descent-based algo-
rithm is applied to update two learnable matrices P and Q [42]. The multiplicative updating
rules to minimize this loss function are

Qαμ ← Qαμ

(PT M)αμ

(PT PQ)αμ

, Piα ← Piα
(MQT)iα

(PQQT)iα
. (4)

Because matrices P and Q are nonnegative, they are explained as user latent factors and
item latent factors, respectively. This constraint enhances the interpretability for low-rank
matrix factorization, and values of predictive ratings are directly computed by multiplying
nonnegative matrices P and Q.

2.2.2 SVD++

Before the introduction to SVD++, we first review some methods for matrix completion
which are based on NBMs. An appropriate similarity measure for the item-oriented NBMs
is described by

si j = ni j
ni j + λ1

ρi j , (5)

where variable ni j represents the number of users who have rated both items i and j . The
variable ρi j is the Pearson correlation coefficient [43] which measures the chances if the
user will rate items i and j similarly. Equation (5) can be regarded as a shrunk correlation
coefficient controlled by the hyperparameter λ1. The typical value of λ1 is 100. Theoretically,
if the number of users that have co-rated both items i and j is higher, the value of si j should
be more close to ρi j . Namely, similarity values computed with more existing ratings are far

123

6 Z. Chen, S. Wang

more convincing. On the contrary, similarity values computed with few ratings should be
shrunk considerably. Using this similarity measure, the prediction for an unknown rating is

ŷui = bui +
∑

j∈Sk (i;u) si j (yu j − bu j)∑
j∈Sk (i;u) si j

, (6)

where bui = μ + bu + bi is the baseline estimation for the unknown rating yui and explains
for the user and item effect (denoted by bu and bi). In Eq. (6), Sk(i; u) denotes a set consisting
of k items that are most similar to the item i , all of which are rated by the user u. Koren [44]
improved the basic neighborhood model by exploiting implicit feedback. If the item set rated
by user u is denoted by R(u) and the set containing all items which the user u has provided
implicit feedback is denoted by N (u), the improved model is computed with

ŷui = bui +
∣∣∣Rk(i; u)

∣∣∣−
1
2

∑
j∈Rk (i;u)

(yu j − bu j)wi j +
∣∣∣Nk(i; u)

∣∣∣−
1
2

∑
j∈Nk (i;u)

ci j , (7)

where Rk(i; u)
de f= R(u) ∩ Sk(i) and Nk(i; u)

de f= N (u) ∩ Sk(i). Rk(i; u) and Nk(i; u) are
sets containing k items most similar to the item i , and all of these items are rated by the
user u. The model assumes that users who have provided more ratings should generate more
significant deviations from baseline estimations.

The LFM proposed by Koren [44] is named SVD++, which considers the user implicit
feedback, as shown in Eq. (8). Similar examples of such model have been proposed in other
literature [45,46].

ŷui = bui + qTi

⎛
⎝pu + |N (u)|− 1

2
∑

j∈N (u)

y j

⎞
⎠ . (8)

In Eq. (8), a user u is modeled as pu+|N (u)|− 1
2
∑

j∈N (u) y j . The sum |N (u)|− 1
2
∑

j∈N (u) y j
denotes the perspective of implicit feedback. Learnable variables of the model are learned
by minimizing the squared error function through the gradient descent-based method.

Koren finally integrated the SVD++ model with the neighborhood model by adding the
results of Eqs. (7) and (8) directly:

ŷui = μ + bu + bi + qTi

⎛
⎝pu + |N (u)|− 1

2
∑

j∈N (u)

y j

⎞
⎠

+
∣∣∣Rk(i; u)

∣∣∣−
1
2

∑
j∈Rk (i;u)

(yu j − bu j)wi j +
∣∣∣Nk(i; u)

∣∣∣−
1
2

∑
j∈Nk (i;u)

ci j . (9)

The equation above is a three-tier model for matrix completion of CF. In the first tier, μ +
bu + bi is a baseline estimation for yui , without taking any other interactions into account.

In the second tier, term qTi (pu + |N (u)|− 1
2
∑

j∈N (u) y j) predicts the interactions between
the user profile and the item profile. The final tier works as a ‘neighborhood tier’ which
explains the influence of implicit feedback. This three-tier framework significantly improves
the accuracy of the matrix completion model by considering both neighbor information and
latent embeddings of users or items.

123

A review on matrix completion for recommender systems 7

2.2.3 SLIM and FISM

Inspired by the item-based k-nearest neighbor (Item-KNN) method, which is another impor-
tant model of NBMs, Ning and Karypis [47] proposed a sparse linear model (SLIM) that
learns an item–item similarity matrix S ∈ R

n×n by solving the optimization problem

argmin
S

1

2
‖M − MS‖2F + β

2
‖S‖2F + λ ‖S‖1 , s.t . S ≥ 0, diag(S) = 0, (10)

where matrix S is constrained to be sparse because generally k � n. Especially, M ∈ R
m×n

is the binary matrix for implicit feedback. The value of yui equals one if the user u has
provided feedback (such as likes and click history) on item i and 0 otherwise. Though SLIM
learns the latent features through S from the existing data, it only discovers relationships
between items that have been co-rated, which leads to missing the transitive nature of such
relations.

To solve this problem and overcome the sparsity inherent in SLIM, Kabbur et al. [48]
provided an improved algorithm dubbed factored item similarity model (FISM) which takes
matrix factorization model into concern:

ŷui = bu + bi + (n+
u)−α

∑
j∈R(u)

p jq
T
i , (11)

where p jqTi computes the similarity between items i and j . Variables p j and qi are the
corresponding vectors from latent matrices P and Q. The set of items rated by user u is
denoted by R(u). Constant n+

u is the number of items rated by user u, and α ranges in [0, 1].
Consequently, the term (n+

u)−α represents the degree of agreement between items rated by
the user u according to their similarities.

Kabbur et al. [48] introduced two variations for FISM which are different in optimization
targets. For the model computed by the root mean squared error (RMSE), the model aims to
address the optimization problem

argmin
P,Q

1

2

∑
u,i∈Ω

∥∥yui − ŷui
∥∥2
F + β

2

(‖P‖2F + ‖Q‖2F
) + λ

2
‖bu‖22 + γ

2
‖bi‖22 , (12)

where P and Q are updated via stochastic gradient descent (SGD) [49]. For the prediction
of the item i , the estimated rating yui is computed by excluding the current item i . Namely,

ŷui = bu + bi + (n+
u − 1)−α

∑
j∈R(u)\{i}

p jq
T
i . (13)

FISM takes advantage of SVD-based models to project feedback into latent spaces, and
then uses the product of low-rank latent matrices to learn item similarities. This promotes the
model to learn transitive relationships implicitly in top-k recommendation tasks. However,
the improvement also complicates the computation and requires more time.

2.2.4 LLORMA

For most matrix factorization models, there is an assumption that the observed matrix should
be low rank. Because most rating records in the user–item matrix are similar and related in
rows or columns, the information within the matrix is redundant. With such an assumption,
hidden information is mined by decomposing a matrix into low-rank matrices, as we have
discussed before. However, instead of considering the entire matrix M to be low rank, Lee

123

8 Z. Chen, S. Wang

et al. [50] presented a new model with the assumption that M should be a low-rank matrix
in the vicinity of certain row-column combinations. The algorithm makes a smooth convex
combination of local low-rank matrices, each of which approximates the original matrix M
in its local region.

Lee et al. [50] first developed local extensions of incomplete SVD model in the vicinity
of (a, b) ∈ [m] × [n]. The local incomplete SVD model is

T̂ (a, b) = argmin
X

‖Kh(a, b) 	 M − X‖2F s.t . rank(X) = r , (14)

where T (·, ·) denotes the operators of form T : [m]×[n] → R
m×n . The rank of optimal X is

subjected to r . Here Kh(a, b) is a smoothing kernel parameterized by a bandwidth parameter
h > 0. Lee et al. [50] applied Epanechnikov kernel in their experiments, as shown below:

Kh(s1, s2) ∝ (
1 − d(s1, s2)

2) 1[d(s1, s2) < h], (15)

where the item similarity or user similarity is applied to measure the distance d(s1, s2).

In order to obtain an efficient estimation ˆ̂T (s) for all s ∈ [m] × [n] with t local models
T̂ (s1), · · · , T̂ (st), st ∈ [m] × [n], Nadaraya–Watson regression [50,51] is applied to obtain
a more precise global approximation by calculating

ˆ̂T (s) =
t∑

i=1

Kh(si , s)∑t
j=1 Kh(s j , s)

T̂ (si), (16)

where the sum of weights equals one. Namely, it is a weighted average of T̂ (s1), . . . , T̂ (st).
The weights indicate that T̂ close to s at indices is more important than that further away from

s. The final matrix approximation is conducted by ˆ̂Yab = ˆ̂Tab(a, b), (a, b) ∈ [m] × [n].
As for the choosing of s1, . . . , st , anchor points are sampled from the whole set [m]× [n]

or training set evenly. With the increase in the number of local models t and the degree of

continuity of T̂ , the accuracy of ˆ̂T improves. Accordingly, the accuracy of the local models

T̂ (s1), . . . , T̂ (st) directly controls the accuracy of global estimation ˆ̂Ta,b. If T̂ (s1), . . . , T̂ (st)

are precise enough and t is large enough, the prediction error between ˆ̂T and T should be
small [41]. This algorithm is termed as the local low-rank matrix approximation (LLORMA)
model.

In addition, because the t iterations of this algorithm are independent from each other, they
can be computed parallelly and work with high efficiency. The idea of solving local matrix
with lower dimensions also helps speed up the computation. As a result, the time cost of
LLORMA is t times solving a single regularized SVD problem. Due to the time-consuming
issue of conducting SVD over the whole matrix, it is a common solution to divide the matrix
completion problem into several subproblems. Multi-Schatten-p norm surrogate (MSS) also
handles rank optimization problems with several subproblems like LLROMA. Both of them
accelerate the computation speed, and we will discuss MSS later in Sect. 2.4.3.

2.2.5 Cofactor

Word embedding models [52–54] have been widely investigated in natural language process-
ing and obtained great success.Word2vec [55] developed byGoogle is one of the well-known
models. These algorithms project words or phrases from the real world into low-dimensional
vectors which are applied as the inputs of other models. Inspired by word embeddingmodels,
Liang et al. [56] proposed the Cofactor to improve the quality of matrix factorization models.

123

A review on matrix completion for recommender systems 9

In this model, apart from the user–item matrix, an item co-occurrence matrix across all users
is built to learn an item embedding, with the assumption that the pairs of items preferred by
different users should be similar. This is very similar to the word embedding models which
transform the documents into a set of co-occurring words.

The whole framework is made of two parts: the matrix factorization model and the item
embedding model. In the matrix factorization part, the model attempts to factorize the given
implicit feedback matrix M ∈ R

m×n into the user latent vector pu ∈ R
r (u = 1, . . . ,m)

and the item latent vector qi ∈ R
r (i = 1, . . . , n) with low-rank assumption. The objective

function for this model is defined as

L(ŷui , pu, qi) =
∑
u,i∈Ω

cui
(
ŷui − pTu qi

)2 + λp

m∑
u=1

‖pu‖22 + λq

n∑
i=1

‖qi‖22 , (17)

where cui is a hyperparameter that is usually set to be cy=1 > cy=0. This scaling parameter
is applied to balance the missing ratings (y = 0) which are far more than the existing ratings
(y = 1) in most click-based data. The optimization of L is considered as maximizing a
posteriori estimate of the probabilistic Gaussian matrix factorization model [45,56].

As for the item embedding model, because sequences of items are similar to sequences of
words, the idea of word embeddingmodels is analogously applied in the item embedding. For
a text document, the context words of word i are surrounding words within a fixed window.
Point-wise mutual information (PMI) [57] matrix between a word i and its context word j
is defined by

PMI (i, j) = log
#(i, j) · D
#(i)#(j)

, (18)

where #(i, j) represents the frequency that word j appears in the context of word i and D
denotes the sum of word-context pairs. Levy and Goldberg [58] have proved the equiva-
lence between skip-gram word2vec trained with negative sampling value of k and implicit
decomposing the PMI matrix shifted by log k. They also recommended implementing the
word embedding by spectral dimensionality reduction on the (sparse) shifted positive PMI
(SPPMI) matrix defined as follows:

SSPM I (i, j) = max{PMI (i, j) − log k, 0}, (19)

where k becomes the hyperparameter controlling the sparsity of SSPMI matrix. In the item
embedding model, if matrix H is the co-occurrence SPPMI matrix, the item embedding can
be obtained by decomposing H . Given a rated item i from a specific user, its context j is
represented as all other items in the click history. The click history refers to items that the user
has rated or consumed. The value of hi j is obtained by the empirical estimates of PMI (i, j)
defined in Eq. (18), where particularly #(i, j) is the total number of users that rated both
items i and j . The combination of the matrix factorization model and item embedding model
is

L(ŷui , pu, qi , hi j) =
∑
u,i∈Ω

cui
(
yui − pTu qi

)2

+
∑
hi j �=0

(
hi j − qTi γ j − wi − c j

)2

+λp

∑
u

‖pu‖22 + λq
∑
i

‖qi‖22 + λγ

∑
j

∥∥γ j
∥∥2
2 . (20)

123

10 Z. Chen, S. Wang

Fig. 3 The structure of an item-based AutoRec model

In this objective function, the first line is thematrix factorizationmodel and the second line
is the item embedding model, the regularization term that avoids overfitting is defined in the
third line. Because the matrix factorization model encodes item vectors to represent the latent
features of items,while the itemembedding has to explain itemco-occurrence patterns,matrix
factorization part and item embedding part share the same item latent factor qi in Eq. (20).
As a result, qi explains both user–item interactions and item–item co-occurrence. Besides,
γ is introduced as an additional model parameter for PMI matrix factorization. Here, cui is
not only a scaling parameter to balance the observed and unobserved information in the click
matrix, but also works on balancing the matrix factorization part and item embedding part
of the model.

2.3 Neural networkmodels

2.3.1 AutoRec

The autoencoder is a neural network which aims to learn a representation for a set of data by
projecting original data into low-dimensional space and rebuilding it, which achieves desired
performance in many fields like natural language processing [59–61] and computer vision
[62–64]. Becausematrices in recommender systems are generally low-rank, low-dimensional
vectors in hidden layers also contain compressed information as latent factors. Therefore,
Sedhain et al. [65] proposed a new CF model based on the autoencoder framework, dubbed
AutoRec, which works effectively in finding compressed representation for user–item rating
matrices.

In this model, each user u ∈ {1, . . . ,m} is represented by an observed vector yu =
[yu1, . . . , yun] ∈ R

n . In the same way, each item is represented by an observed vector
yi = [y1i , . . . , ymi] ∈ R

m . The AutoRec builds an item-based or user-based autoencoder
model which takes each observed yi or yu as input, and then compresses the inputs onto
low-dimension vectors. Finally, the model reconstructs yi or yu in the output layer to predict
unknown ratings of the user–item rating matrix. The model is illustrated in Fig. 3.

123

A review on matrix completion for recommender systems 11

Given a set of rating vectors S ∈ R
d , the autoencoder aims to solve the optimization

problem

argmin
θ

∑
y∈S

‖y − h(y; θ))‖22 , (21)

where h(y; θ) rebuilds the input y ∈ R
d from hidden layers with

h(y; θ) = f (WDg(WE y + μ) + b) . (22)

Functions f (·) and g(·) are arbitrary activation functions. The parameter set θ =
{WE ,WD, μ, b} is updated with gradient descent and back propagation. The optimization
for item-based AutoRec is defined as

argmin
θ

n∑
i=1

‖yi − h(yi ; θ)‖2F + λ

2

(‖WE‖2F + ‖WD‖2F
)
, (23)

where only existing ratings in the training set are considered due to partial observation on
ratings. This optimization target corresponds to a neural network with a single hidden layer
which has k hidden units. Term λ

2 (‖WE‖2F + ‖WD‖2F) is the regularization term that avoids
overfitting, and λ > 0 controls the regularization strength. After training, the prediction for
yui is computed by ŷui = (h(yi ; θ))u . Amain shortcoming of AutoRec is that it only projects
data with linear layers. This makes the projection become an identity function, which may
lead to inadequate feature learning.

2.3.2 CDAE

AutoRec is a simple but efficient application for matrix completion via autoencoders. On
the basis of it, Wu et al. [66] further presented a model for top-k recommender dubbed
collaborative denoising autoencoder (CDAE)with denoising autoencoder (DAE) framework.
DAE is widely used in many fields [67–69], which learns latent representations from the
original and corrupted features of the training set and then trains the model to rebuild the
original values.

CDAE model is a neural network with one hidden layer, as shown in Fig. 4. In the input
layer, there are n item input nodes and a specific user input node. The user node is a k-
dimensional vector that is learned during training. The item nodes yu = {yu1 , . . . , yun}
denote the n-dimensional implicit feedback vector of user u on all items, where yui = 1 if
the item i is preferred by the user u in the training set. DAE generates corrupted ỹui and then
attempts to reconstruct it into the original yui , for the purpose of making the hidden layer
discover more robust features and preventing frommerely learning the identity function [70].
Wu et al. [66] applied multiplicative mask-out/drop-out noise to reconstruct each dimension
of yui with 0 via a probability of q , formulated as

P(ỹui = δyui) = 1 − q,

P(ỹui = 0) = q.
(24)

In order to make the corruption unbiased, uncorrupted values are recomputed via multiplying
original values by δ = 1

(1−q)
.

In the hidden layer, there are k nodes fully connecting to the nodes of the input layer,
as well as an additional node representing the bias effect. WE ∈ R

n×k is a weight matrix
between item input nodes and hidden layer. Notice that Vu ∈ R

k is a user-specific node in

123

12 Z. Chen, S. Wang

Fig. 4 The structure of CDAE
model for a specific user u

the input layer, and each user has their own user vector. In the hidden layer, the model first
projects the input into a latent vector zu by

zu = h
(
WT

E ỹu + Vu + bE
)

, (25)

where h(·) is the activation function, e.g., the sigmoid function. The output layer rebuilds the
input vector via

ŷu = f
(
WT

Dzu + bD
)

, (26)

where WD ∈ Rn×k and bD are the weight matrix and bias vector between the hidden layer
and the output layer. f (·) is also an activation function. Finally, parameters are learned by
minimizing the average reconstruction error over all m users:

argmin
WE ,WD ,V ,bE ,bD

1

m

m∑
u=1

Ep(ỹu |yu)[l(ỹu, ŷu)] + T (WE ,WD, V , bE , bD) , (27)

where T (·) is the L2 regularization that avoids overfitting, as shown below:

T (·) = λ

2

(‖WE‖22 + ‖WD‖22 + ‖V ‖22 + ‖bE‖22 + ‖bD‖22
)
. (28)

All trainable parameters are learned by SGD. In order to accelerate the speed of this
model, the framework only computes parameters with part of the rating set. If set R(u) is the
collection of items in the training set rated by user u and R̄(u) is a set of unrated items for

123

A review on matrix completion for recommender systems 13

user u, the model samples a subset of negative items S(u) from R̄(u) randomly for parameter
updating.

Meanwhile, the model employs AdaGrad [71] to automatically adapt the step size during
the training procedure:

θ(t+1) = θ(t) − ηg(t)
θ√

β + ∑t
s=1 g

(s)
θ

, (29)

where θ(t) and g(t)
θ are values of θ and gradient at the t th SGD step, respectively. When

the model makes predictions, the first k items with the largest values in the output layer are
recommended to the specific user.

2.3.3 DMF

CDAE model mentioned above only illustrates the preference of users by addressing on
the implicit feedback. Xue et al. [72] presented a neural network-based model dubbed deep
matrix factorization (DMF) for top-k recommendationswith both explicit ratings and implicit
feedback. DMF is also a matrix factorization model, but it is implemented with deep neural
networks. As shown in Fig. 5, there are two parallel multilayer networks to transform the
representation of user u and item i , respectively. Both user u and item i are projected onto
low-dimensional vectors by

pu = fθUN

(
· · · fθU3

(
WU2 fθU2

(yuWU1)
)

· · ·
)

,

qi = fθ I
N

(
· · · fθ I

3

(
WI2 fθ I

2
(yiWI1)

)
· · ·

)
,

(30)

where WUk and WIk are the kth weight matrices for extracting hidden information of users
and items. The similarity between the user u and the item i is measured by

ŷui = FDMF (u, i |θ) = cosine(pu, qi) = pTu qi
‖pu‖ ‖qi‖ . (31)

Because the predicted value in Eq. (31) may be negative, mapping ŷoui = max(μ, ŷui) is
applied to transform the prediction to a nonnegative value.

A new loss function is employed to consider both explicit and implicit information in this
model, so that both two types of feedback are used together for optimization. The new loss
function is dubbed normalized cross-entropy (NCE) loss, defined by

L(ŷui , yui) = −
∑

(u,i)∈Ω

(
yui

max(R)
log ŷui +

(
1 − yui

max(R)

)
log

(
1 − ŷui

))
, (32)

where max(R) represents the maximum value among all ratings. If it is a classical 5-star
rating recommender, max(R) equals 5. As a result, different values of yi j lead to different
influence on the loss function.

2.3.4 Graph-based methods

Owing to the powerful ability of integrating connecting patterns between nodes in the non-
Euclidean domain, graph-based methods have achieved significant performance in recent
years. Spectral graph convolution is a typical method of graph-based approaches, which has

123

14 Z. Chen, S. Wang

Fig. 5 The basic architecture of the DMF model

been widely applied in recommender systems. As an example, SpectralCF [73] was proposed
to address the cold-start problem in recommender systems, exploiting the bipartite user–item
relationship graph and a new convolution operation to estimate recommendations in the
spectral domain. It can also be regarded as a variant of graph convolutional network (GCN).
GCNwas developed byKipf et al. [74] to perform convolution operations on graph-structured
data, formulated as

H (l) = σ
(
D̃− 1

2 ÃD̃− 1
2 H (l−1)W (l)

)
, (33)

where Ã = A + I denotes the adjacency matrix considering the self-connections, and
[D̃]i i = ∑

j [Ã]i j . The weight matrix in the lth layer is denoted by W (l). It is a first-
order approximation of truncated Chebyshev polynomial, which is deduced from spectral
convolutions on graphs, that is,

123

A review on matrix completion for recommender systems 15

gθ x = UgθU
x, (34)

where U denotes the eigenvalue matrix of the normalized graph Laplacian matrix, x ∈
R
m is the input feature and gθ = diag(θ) is the parameterized filter. GCN aims to learn

the embedding H (l) from network typology, because of which it is extensively applied in
recommender systems to recover missing values of an interaction matrix via exploring the
latent relationship between users and items. Numerous methods based on GCN have been
developed recently. For example, Berg et al. [75] employed graph autoencoders derived from
GCN to retrieval themissing values in an incompletematrix,where thematrix completion task
was converted into the link prediction problem on graphs. Monti et al. [76] combined GCN
with recurrent neural networks (RNN) to explore the underlying graph-structured patterns
between users. Wang et al. [77] presented a neural graph collaborative filtering (NGCF)
framework which integrates user–item interactions into the GCN framework and explicitly
leverages the collaborative signal.

2.4 Rankminimizationmodels

2.4.1 IRNN

In this section, we take a look into rankminimization models for low-rank optimization prob-
lems. Different from the low-rank matrix factorization described before, rank optimization
methods focus on minimizing the rank function with

argmin
M

h(M) = f (M) + rank(M), (35)

where f (·) is a differentiable loss function and rank(·) is the rank function on the matrix M .
For matrix completion problems in recommender systems, f (·) is generally defined as

f (M) = ‖MΩ − M∗
Ω‖2F , (36)

whereM∗
Ω is the reconstructedmatrix. Because rank(·) is exactly the sumof nonzero singular

values of the input matrix, it is nondifferentiable. Sometimes, it becomes anNP-hard problem
which is difficult to solve. To tackle this problem,we can relax rank(·) to someother surrogate
functions g(·) like �p norm, nuclear norm or Schatten-p norm. Accordingly, Eq. (35) is
transformed into

argmin
M

h(M) = f (M) + λg(M), (37)

where λ is the regularization coefficient. Generally, the surrogate function g(·) and loss
function f (·) should satisfy the following assumptions.

Assumption 1 g(·) is continuous, nonconvex and monotonically increasing on [0,∞). It is
possibly nonsmooth.

Assumption 2 f (·) is a differentiable and smooth function whose gradient is Lipschitz con-
tinuous as

‖∇ f (A) − ∇ f (B)‖F ≤ L(f) ‖A − B‖F , (38)

for any A, B ∈ R
m×n . Here L(f) > 0 is the Lipschitz constant. Notice that f (·) is possibly

nonconvex.

Assumption 3 h(M) → ∞ if and only if ‖M‖F → ∞, which guarantees the convergence.

123

16 Z. Chen, S. Wang

Table 2 Several specified
nonconvex definitions of
functions g(θ)

Norm Definition g(θ), θ ≥ 0 with λ ≥ 0

�p-norm [78] g(θ) = λθ p , 0 < p < 1

Logarithm [79] g(θ) = λ
log(γ+1) log(γ θ + 1)

Geman [80] g(θ) = λθ
θ+γ

Laplace [81] g(θ) = λ(1 − exp(− θ
γ))

ETP [82] g(θ) = λ
1−exp(−γ θ)
1−exp(−γ)

Table 2 shows some specified nonconvex surrogates of g(·). Applying theory of supergra-
dient [83], Lu et al. [84] proposed iteratively reweighted nuclear norm (IRNN) to optimize
rank minimization problems with surrogates of g(·). IRNN updates M at the kth iteration by
solving the minimization problem

Mk+1 = argmin
M

f (M) +
r∑

i=1

wk
i σi , (39)

where σi is the i th singular value of M and wk
i is the supergradient computed via

wk
i ∈ ∂gλ(σi). (40)

Because of the antimonotone property of surpergradient, a significant singular value has a
smaller weight wi . The iterative updating rule of the proximal gradient method for solving
Equation (39) is derived from

M (k+1) = argmin
M

f (M (k)) + 〈∇ f (M (k)), M − M (k)〉

+ L

2

∥∥∥M − M (k)
∥∥∥2
F

+ g(M)

= argmin
M

L

2

∥∥∥∥M − M (k) + 1

L
∇ f (M (k))

∥∥∥∥
2

F
+

r∑
i=1

wk
i σi , (41)

where L is the Lipschitz constant. Equation (41) has a closed-form solution given byweighted
singular value thresholding

Mk+1 = Uηλw(Σ)V T , (42)

where Y = M (k) − 1
L ∇ f (M (k)), UΣV T = Y is the SVD of Y , and ηλw = diag{(Σi i −

λwi)+}.Σ is the diagonal singular valuematrix,whichmeans thatΣi i denotes the i th singular
value of Y . Each iteration of IRNN is a two-step learning scheme that updates wk

i with Eq.
(40) and Mk+1 with Eq. (41), respectively.

2.4.2 DNNR

Inspired by IRNN and properties of supergradient, Zhang et al. [85] improved IRNN with
the weighted singular value function (WSVF), which was formulated as

ρw(σ (M)) =
r∑

i=1

wiρ(σi), (43)

123

A review on matrix completion for recommender systems 17

where ρ(·) is a nonconvex and lower semicontinuous function on [0,∞). The same as IRNN,
a lowerweight indicates amore significant singular value.Whenρ(σi) is the identity function,
Eq. (43) is degraded to g(·) in IRNN. With aforementioned notations, the rank minimization
problem can be solved by

argmin
M

h(M) = f (M) + λρw(σ (M)). (44)

Because the optimization target can be derived from

argmin
M

h(M) = f (M) + λ

r∑
i=1

ρ1(ρ(σi)) (45)

with concepts of supergradient and reweighted strategies, where ρ1(·) = ρ(·), it is also
dubbed double nonconvex nonsmooth rank (DNNR) minimization problem. By linearizing
Equation (44), the optimal solution is achieved by

argmin
M

1

2
‖Mk − Y‖2F + λρw(σ (Mk)), (46)

which has a closed form solution Mk+1 = Udiag(δ∗(Y))V , termed as WSVF thresholding
operator. The i th operator solves the problem with

δ∗
i ∈ proxρ(σi) = argmin

δi≥0
λwiρ(δi) + 1

2
(δi − σi)

2. (47)

Existing works [86–88] have derived the closed-form solutions when ρ(·) is the �p-norm
with p = 1

2 or p = 2
3 . For simplicity, we denote λwi as ξ , σi as σ and δi as δ, respectively.

When p = 1
2 , we have

δ∗ =
{

2
3σ(1 + cos(2π3 − 2φ(σ)

3)), σ > ϕ(ξ),

0, otherwise,
(48)

where φ(σ) = arccos(ξ/4(σ/3)−3/2) and ϕ(ξ) = 3 3
√
2/4(2ξ)2/3. Similarly, when p = 2

3 ,
the optimal solution is computed by

δ∗ =
{

((� + √
2σ/� − � 2)/2)3, σ > ϕ(ξ),

0, otherwise,
(49)

where � = 2/31/2(2ξ)1/4cosh(arccosh(27σ 2/16(2ξ)−3/2)/3)1/2 and ϕ(ξ) = 2/3
(3(2ξ)3)1/4. Analogous to IRNN, the updating rules for DNNR include 2 steps at each
iteration. The model first computes the weight wk

i with supergradient

wk
i ∈ ∂ρ(ρ(σi (M

k))), (50)

and then updates Mk+1 by solving optimization problem (46). Distinct from the aforemen-
tioned IRNN, DNNR method is more general than IRNN because of double nonconvex
constraint functions on singular values. Due to this reason, the updating rules of DNNR for
Xk+1 and wk are based on the singular value function ρ(σi (·)) instead of depending on σi (·)
directly. However, there is a critical problem that IRNN and DNNR face the time-consuming
issue because of conducting SVDon thewhole interactionmatrixM , which brings difficulties
for applying them to large-scale datasets.

123

18 Z. Chen, S. Wang

2.4.3 MSS

To avoid conducting SVD of the entire matrix and reduce time consumption, Xu et al. [89]
proposed a unified convex surrogate for the Schatten-p norm minimization problem, where
the optimization problem was decomposed into several subproblems so that SVD could be
conducted over a matrix with lower dimensions.

Inspired by low-rank matrix factorization, the low-rank minimization problem defined by
Eq. (37) can be rewritten as

argmin
U ,V

h(U , V) = f (U , V) + λ(g(U) + g(V)), (51)

where U ∈ R
m×d and V ∈ R

n×d are the unknown latent factor matrices that M = UV T

holds. Recent related works have attempted to find surrogates for specific p values when
g(X) is denoted by the Schatten-p norm

‖X‖Sp =
⎛
⎝min{m,n}∑

i=1

σi (X)p

⎞
⎠

1
p

=
(
Tr((XT X)

p
2)
) 1

p
(52)

for any factors X . It is a well-known unitarily invariant norm.When p = 1, Schatten-p norm
becomes the widely used nuclear norm or trace norm. Srebro et al. [90] has investigated the
bi-Frobenius norm surrogate for the nuclear norm as

‖M‖∗ = arg min
U ,V :M=UV T

1

2
‖U‖2F + 1

2
‖V ‖2F . (53)

Moreover, Shang et al. [91,92] proved the following equalities when p = 1
2 and p = 2

3 :

2‖M‖1/2S1/2
= arg min

U ,V :M=UV T
‖U‖∗ + ‖V ‖∗,

3

2
‖M‖2/3S2/3

= arg min
U ,V :M=UV T

‖U‖∗ + 1

2
‖V ‖2F .

(54)

Summarized from these existing work, Xu et al. [89] speculated and proved that the
bilinear surrogate for Schatten-p norm could be extended to a more general problem, dubbed
multi-Schatten-p norm surrogate (MSS) optimization problem:

1

p
‖M‖p

Sp
= argmin

Xi

I∑
i=1

1

pi
‖Xi‖pi

Spi
, (55)

where any pi > 0 satisfies 1
p = ∑I

i=1
1
pi
, M = ∏I

i=1 Xi with X1 ∈ R
m×d1 , Xi ∈

R
di×di , i = 2, . . . , I − 1 and XI ∈ R

dI×n . The optimization problem for MSS can be
solved by block coordinate descent (BCD) [93] which minimizes each Xi at a single itera-
tion by fixing the remaining blocks. Each subproblem is solved by the proximal alternating
linearized minimization (PALM) algorithm. Specifically, the proximal gradient method for
each factor Xi at each iteration is computed by

123

A review on matrix completion for recommender systems 19

X (k+1)
i = argmin

Xi
f (X (k)

i) + 〈∇ f (X (k)
i), Xi − X (k)〉

+ L(k−1)
i

2

∥∥∥Xi − X (k)
i

∥∥∥2
F

+ 1

pi
‖Xi‖pi

Spi

= argmin
Xi

L(k−1)
i

2
‖Xi − Y‖2F + 1

pi
‖Xi‖pi

Spi
, (56)

which can be solved by closed-form solutions for a specific pi value. Furthermore, the
acceleration technique [94] is adopted, where X̂ (k)

i is updated via

X̂ (k)
i = X (k)

i + wk
i (X

k
i − Xk−1

i), (57)

and wk
i is computed by

wk
i = min

⎧⎨
⎩
tk − 1

tk
, 0.9999

√√√√ Lk−1
i

Lk
i

⎫⎬
⎭ (58)

with t1 = 1 and tk+1 = (1 +
√
1 + 4t2k)/2.

Generally, the learning scheme for MSS of each subproblem is similar to IRNN and
DNNR. However, compared with IRNN and DNNR, MSS solves the time-consuming issue
by transforming the original problem into subproblems that are easier to solve. This avoids
conducting SVD of the whole matrix and further speeds up the computation on large-scale
datasets. In addition, rather than only specific to some p values of DNNR (p = 1

2 and p = 2
3),

the unified model can solve more p values flexibly by considering different combinations of
subproblems.

2.4.4 ISVTA

Distinct from the convex and nonconvex rank relaxations we have introduced before, Zhang
et al. [95] presented a modified Schatten-p norm as a surrogate of the rank function, denoted
as

min
X

{
Hλ(X) = 1

2
‖A(X) − b‖2F + λ‖X‖p

Sp,ε

}
, (59)

where the objectiveHλ(X) is nonconvex and cannot be optimized directly. However, it can be
solved by the linearized strategy or adding more variables (e.g., alternating direction method
of multipliers), which may guarantee that each subproblem has the closed-form solution. In
order to gain the closed-form solution directly, Zhang et al. optimized the surrogate function
of Hλ(X) by adding several quadratic terms, as shown below:

min
X ,Y

{
Hλ,μ(X , Y)

= μ

[
1

2
‖A(X) − b‖2F + λ

∑
i

σi (X)

(σi (Y) + εi)
1−p

]

−μ

2
‖A(X) − A(Y)‖2F + 1

2
‖X − Y‖2F

}
, (60)

123

20 Z. Chen, S. Wang

Table 3 Statistics of the real-world datasets in our experiments

FilmTrust ML-100K ML-1M Netflix Epinions Jester

Number of users 1508 943 6040 1500 3586 15,000

Number of items 2071 1682 3706 2000 12,000 150

Number of ratings 35,497 100,000 1,000,209 137,962 81,513 390,772

Rating scale [0.5, 4.0] [1.0, 5.0] [1.0, 5.0] [1.0, 5.0] [1.0, 5.0] [−10.0, 10.0]

Density 0.01137 0.06305 0.04468 0.04599 0.00190 0.17368

which can be optimized more efficiently. Furthermore, Zhang et al. devised the iterative
singular value thresholding algorithm (ISVTA) to solve Eq. (60). Each iteration of ISVTA
can be summarized as follows:

Bμ

(
Xk

)
= Xk − μA∗ (A (

Xk
)

− b
)

, (61)

λk+1 = κkλ0 ≤ λt , 0 < κ < 1, (62)

Xk+1 = Gλ,μ

(
Bμ

(
Xk

))
= UkSτw

(
Σk

Bμ

) (
V k

)T
, (63)

where Σk
Bμ

is the singular values of Bμ

(
Xk

)
and the soft thresholding operator is denoted

as Sτw

(
Σk

Bμ

)
= Diag

{(
Σk

Bμ,i i − τwi
)
+
}
for i = 1, 2, . . . , r . In particular, we can set

τ = λμ and wi = 1
(σi (X∗)+εi)

1−p with 0 < p < 1. In theory, this method can reduce the

number of iterations to improve the computational consumption and provide a better global
convergence guarantee compared to other methods introduced before [95].

3 Experiments

In this section, we conduct substantial experiments on the models mentioned in Sect. 2
with different real-world datasets. Because some methods are designed specially for top-
k recommendations, and some methods focusing on rating prediction are not suitable for
top-k tasks, experiments are divided into rating (NMF [34], SVD++ [44], LLORMA [50],
AutoRec [65], GCMC [75], sRGCNN [76], IRNN [84], DNNR [85], MSS [89], ISVTA
[95]) and ranking (Item-KNN, SLIM [47], FISM [48], CDAE [66], Cofactor [56], DMF [72],
SpectralCF [73], NGCF [77]) tasks for a fair comparison. Different evaluation measurements
are utilized to compare the performance of different algorithms, as well as the time cost for
predicting.

3.1 Datasets description

In this paper, comparing experiments are conducted over several real-world datasets, includ-
ing movie recommendation datasets, joke rating datasets and shopping recommendation
datasets, etc. The textual descriptions of these datasets are listed below:

FilmTrust1 dataset is a small movie recommender dataset crawled from the FilmTrust
website in 2011, which contains 35,497 rating records over 1508 users and 2071 items.

1 https://www.librec.net/datasets.html.

123

https://www.librec.net/datasets.html

A review on matrix completion for recommender systems 21

Movielens2 is provided by GroupLens Research from the MovieLens website and has
many versions of datasets collected at different times. In this paper, MovieLens-100K (ML-
100K) and MovieLens-1M (ML-1M) are selected to conduct experiments.

Netflix3 is a popular onlinemovies and TVswebsite. Its dataset contains about 100million
ratings and is used in the Netflix Prize competition. We only extract part of the data with
1,500 users and 2,000 items.

Epinions4 was collected from the Epinions website where people have provided ratings
for different types of products. The dataset in our experiments contains 81,513 ratings over
3586 users and 12,000 items.

Jester5 is a benchmark dataset for joke recommender systems which contains substan-
tial ratings of users on different jokes. Different from other datasets, its ratings range in
[−10.0, 10.0].

The detailed statistics of these datasets are shown in Table 3, including dimensions, num-
bers of ratings, rating scales, and density.

3.2 Performance evaluation

For rating problems, we use root mean squared error (RMSE) and mean absolute error
(MAE) [96] to evaluate the performance of recommendation models for rating. Both RMSE
and MAE measure the deviation between the observed data and the real data, and smaller
values of these two metrics indicate better performance of models. Given t testing entries
with their real values y1, . . . , yt and predictive values ŷ1, . . . , ŷt , Eqs. (64) and (65) are used
to compute RMSE and MAE:

RMSE =
√√√√1

t

t∑
i=1

(yi − ŷi), (64)

MAE = 1

t

t∑
i=1

‖yi − ŷi‖. (65)

As for top-k problems, we adopt two metrics designed for ranking known as normalized
discounted cumulative gain (NDCG) [97] and RECALL [98] to evaluate the list of k recom-
mended items. NDCG emphasizes the ranks of the estimating results and takes the variation
between real ranks and predicted ranks into concern. When an item of high preference for
a specific user appears in the high ranking, the value of NDCG would be higher. To explain
the definition of NDCG, we need to introduce the discounted cumulative gain (DCG)

DCG =
k∑

i=1

2reli − 1

log2(i + 1)
, (66)

where reli is the relationship that measures the importance of item i . In our experiments, we
use the real score of item i to represent reli , because a higher rating value indicates a higher
preference of a user. Ideal DCG (iDCG) is the ideal value of DCG, which is also computed
by Eq. (66). With DCG and iDCG computed, NDCG is computed with NDCG = DCG

IDCG .

2 https://grouplens.org/datasets/movielens/.
3 https://www.kaggle.com/netflix-inc/netflix-prize-data.
4 http://www.trustlet.org/wiki/Epinions_dataset.
5 https://goldberg.berkeley.edu/jester-data/.

123

https://grouplens.org/datasets/movielens/
https://www.kaggle.com/netflix-inc/netflix-prize-data
http://www.trustlet.org/wiki/Epinions_dataset
https://goldberg.berkeley.edu/jester-data/

22 Z. Chen, S. Wang

RECALL is different fromNDCG,which holds the view that all items in the recommended
list are equivalent without considering predicted ranking. It is defined by

RECALL = #T P

#T P + #FN
, (67)

where #T P is the number of true positive items and #FN is the number of false negative
items.

3.3 Performance comparison

For all algorithms, we follow the settings in original papers or codes if feasible. Some
parameter settings that we selected via our substantial experiments are clarified in
advance to gain more credible results. Learning rates of all algorithms are selected in
{0.1, 0.001, 0.005, 0.0001}. The dimensions of latent factors for matrix factorization models
range in [50, 300] with step size 50. Other specific parameters of some algorithms are listed
as follows: SVD++: fix regularization coefficients λp , λq and λb = 0.01; LLORMA: fix
number of anchor points t = 55, set local λP , λQ = 0.01, global λP , λQ = 0.1, and apply
Epanechnikov kernel with h1 = h2 = 0.8; AutoRec: fix λ = 0.001; Item KNN and SLIM:
adopt numbers of KNN neighbors ranging in [10, 20, . . . , 100]. FISM: set α and β ranging
in [0.1, 1.0] with step size 0.1, and fix λ = γ = 0.1; CDAE: set sigmoid as the activation
function and set λ = 0.01; DMF: set ReLU as the activation function, and fix λ = 0.001.
The number of hidden layers is set N = 8; Cofactor: set λU = λV = 0.000001, the ratio
cy=0 = 0.1 and cy=1 = 1; IRNN, DNNR and ISVTA: initialize λ0 = α‖PΩ(M)‖∞, where
α ranges in [1, 100, 200, . . . , 1000]; MSS: fix η = 0.1 and λ = 200, and the factor number
is set 4 or 5 with pi = 1, i = 1, . . . , I , that is, p = 0.25 or 0.2. For top-k recommendation
tasks, we set k = 100 to generate top 100 recommendation lists.

In order to discover the effect of varying numbers of latent factors, we run comparison
experiments for all algorithms based on learning user or item embedding, includingAutoRec,
CDAE, and all matrix factorization models. We keep the other parameters as constants and
then consider the number of factors as a variable. Experiments are conducted over ML-100K
and Jester datasets. For AutoRec and CDAE, we define the dimension of the hidden layer
as the number of latent factors. Figure 6 records the results of experiments. On the whole,
the performance of most algorithms increases as the factors increase, while may decline
when the number of factors is too large. From the figures, we find that the performance
of FISM is stable, so better recommendations can be obtained with a small computational
cost. The performance of AutoRec and CDAE fluctuates greatly in all tested datasets; CDAE
especially demands for more factors to rebuild the corrupted data for obtaining a higher
value of NDCG. Contrary to other algorithms, Cofactor reaches its best performance when
the number of factors is small compared with other models, and performs poorly with too
many factors. For rank minimization methods, we compare the performance across different
p values, as shown in Fig. 7. Generally, smaller p values lead to lower RMSE for IRNN.
On the contrary, MSS gains better performance when p is close to 0. Although DNNR is
developed from IRNN, it only works when p = 1

2 and
2
3 . The best p value for DNNRmethod

is uncertain.
Furthermore, we make comparison over all tested datasets for all selected algorithms.

Fivefold cross-validation is applied to all experiments, and we record the average as well
as the standard deviation of all metrics. The performance of rating and ranking tasks is
listed in Tables 4 to 7. From these tables, we have the following observations: First of all,

123

A review on matrix completion for recommender systems 23

(b)(a)

Fig. 6 Effect of factor number on a ML-100K and b Jester

(b)(a)

Fig. 7 Effect of varying p values on a ML-100K and b Jester datasets. Because DNNR only allows p = 1
2

and 2
3 , we plot it with two lines across different p values

it can be found from the experimental results that SVD++ has excellent performance on
most datasets among all tested methods except graph-based models. This is because that
SVD++ makes full use of implicit feedback and explicit feedback, and considers both matrix
factorization methods and neighborhood methods. Graph-based models (i.e., GCMC and
sRGCNN) achieve pleasurable performance in rating prediction tasks, because generated
graph-structured features can better depict the relationships between users and items, and
graphs are able to propagate information more effectively. Secondly, on the whole, rank

123

24 Z. Chen, S. Wang

Table 4 The performance (MAE±std%) comparison for rating tasks on all tested data. The lower the better

FilmTrust ML-100K ML-1M Netflix Epinions Jester

NMF [34] 0.643±0.7 0.751±0.3 0.727±0.1 0.749±0.2 0.805±0.7 3.437±0.7

SVD++ [44] 0.616±0.7 0.714±0.2 0.661±0.1 0.703±0.2 0.777±0.5 3.395±1.1

LLORMA [50] 0.634±0.8 0.715±0.2 0.676±0.1 0.698±0.3 0.876±0.6 3.242±1.1

AutoRec [65] 0.647±1.0 0.707±0.3 0.682±0.7 0.695±0.1 0.894±0.9 3.522±2.6

GCMC [75] 0.621±0.7 0.709±0.5 0.674±0.7 0.698±0.3 0.764±0.7 3.402±2.8

sRGCNN [76] 0.603±0.8 0.702±0.1 0.690±0.9 0.696±0.1 0.878±1.2 3.312±2.2

IRNN [84] 0.740±0.7 0.721±0.4 0.730±0.5 0.752±0.2 1.401±0.8 4.248±1.8

DNNR [85] 0.736±0.8 0.743±0.3 0.749±0.6 0.748±0.2 1.489±0.4 3.998±1.5

MSS [89] 0.620±0.9 0.741±0.2 0.688±0.7 0.731±0.3 0.812±0.8 3.391±1.4

ISVTA [95] 0.904±0.8 0.784±0.3 0.671±0.4 0.762±0.4 1.324±1.2 4.352±1.8

Table 5 The performance (RMSE±std%) comparison for rating tasks on all tested data. The lower the better

FilmTrust ML-100K ML-1M Netflix Epinions Jester

NMF [34] 0.860±0.9 0.954±0.5 0.921±0.2 0.961±0.1 1.081±0.9 4.524±0.9

SVD++ [44] 0.800±0.8 0.909±0.4 0.847±0.2 0.907±0.3 1.016±0.7 4.514±1.5

LLORMA [50] 0.855±1.0 0.908±0.2 0.864±0.2 0.917±0.3 1.182±1.0 4.379±1.1

AutoRec [65] 0.845±1.1 0.904±0.4 0.870±1.1 0.918±0.2 1.153±0.7 4.645±1.6

GCMC [75] 0.803±0.5 0.902±0.4 0.853±0.6 0.903±0.2 0.992±0.7 4.432±3.1

sRGCNN [76] 0.796±1.1 0.927±0.3 0.881±0.4 0.891±0.3 1.192±1.3 4.602±2.5

IRNN [84] 1.001±0.8 0.938±0.3 0.930±0.6 0.979±0.2 1.883±0.9 5.634±1.9

DNNR [85] 0.998±0.7 0.951±0.2 0.969±0.5 0.963±0.2 1.915±1.2 5.354±1.7

MSS [89] 0.810±0.7 0.942±0.4 0.874±0.6 0.949±0.4 1.047±0.7 4.490±1.5

ISVTA [95] 1.210±0.9 1.018±0.2 0.935±0.4 1.012±0.5 1.765±1.3 5.893±1.9

minimization methods perform worse than other types of models, which may be attributed
to the fact that these methods concentrate more on recovering existing values of the matrix
instead of predicting missing values in test sets. As to the top-k experiments, methods based
on KNN (Item-KNN and SLIM) achieve superior performance, which indicates that ideas
of KNN are still effective. It is obvious that SLIM and CDAE gain extremely high NDCG
values in Jester dataset. This is probably because that both of them learn meaningful user
or item embedding when the number of items is further smaller than the number of users.
Besides, FISM andDMF both gain acceptable performance, while CDAE performs poorly on
some sparse datasets. The experimental results figure out that neural networkmethods are not
always better than traditional machine learning models, and even sometimes achieve worse
performance. This motivates us to continue developing traditional optimization methods.
Last but not the least, it is clear that all algorithms perform poorly with sparse datasets,
which shows that an essential challenge for recommender systems is sparsity. Because the
scale of ratings in Jester is wide, the results of RMSE and MAE are extraordinarily larger
than other datasets.

Table 8 records runtime comparison of various algorithms on different tested datasets. It
is evident that neural network-based models such as AutoRec, CDAE, DMF, and all graph-

123

A review on matrix completion for recommender systems 25

Table 6 The performance (NDCG±std%) comparison for ranking tasks on all tested data. The higher the
better

FilmTrust ML-100K ML-1M Netflix Epinions Jester

Item-KNN 0.607±0.7 0.569±0.7 0.455±1.9 0.507±1.2 0.208±0.8 0.375±0.4

SLIM [47] 0.666±0.8 0.587±0.9 0.542±1.5 0.567±1.0 0.187±0.7 0.585±0.5

FISM [48] 0.624±0.3 0.463±0.4 0.430±1.2 0.480±0.5 0.142±0.5 0.377±0.1

Cofactor [56] 0.202±0.7 0.161±1.2 0.189±1.7 0.104±0.3 0.092±1.8 0.822±0.7

CDAE [66] 0.305±1.3 0.439±4.1 0.260±4.5 0.447±8.3 0.019±0.2 0.819±0.1

DMF [72] 0.436±1.8 0.430±3.0 0.434±3.8 0.413±6.2 0.146±2.1 0.500±1.2

SpectralCF [73] 0.621±1.3 0.523±2.7 0.482±4.1 0.492±5.8 0.153±1.4 0.643±1.1

NGCF [77] 0.597±1.1 0.548±0.9 0.532±2.3 0.539±4.4 0.198±1.1 0.674±0.9

Table 7 The performance (RECALL±std%) comparison for ranking tasks on all tested data. The higher the
better

FilmTrust ML-100K ML-1M Netflix Epinions Jester

Item-KNN 0.894±0.5 0.667±0.8 0.351±1.2 0.608±0.8 0.288±0.5 0.739±0.5

SLIM [47] 0.884±0.5 0.601±0.7 0.353±1.3 0.630±0.9 0.219±0.3 0.956±0.6

FISM [48] 0.887±0.2 0.416±0.1 0.290±1.6 0.556±0.3 0.175±0.4 0.709±0.2

Cofactor [56] 0.392±0.4 0.287±0.8 0.268±1.3 0.258±0.1 0.213±0.7 0.346±0.8

CDAE [66] 0.298±0.7 0.294±0.2 0.204±0.2 0.310±0.5 0.024±0.1 0.970±0.1

DMF [72] 0.867±1.2 0.561±0.9 0.405±1.4 0.570±0.7 0.210±0.4 0.943±0.9

SpectralCF [73] 0.872±1.1 0.574±1.1 0.335±1.8 0.623±0.8 0.193±1.1 0.791±0.8

NGCF [77] 0.864±1.0 0.623±0.8 0.298±1.1 0.365±1.2 0.209±0.9 0.785±0.8

based methods, cost more time for estimations than other models. Because item-KNN has
no iterative updating procedure, it is the fastest method among all tested models. Apart
from item-KNN, LLORMA and MSS work swiftly in most datasets, followed by SVD++.
This is because that both LLORMA and MSS consider localized subproblems with lower
dimensions. The runtime of IRNN and DNNR is extremely high among machine learning
methods, due to the inefficient SVD of the entire matrix at each iteration. It is noted that the
computational cost of some gradient-based methods is not related to the dimension of the
feedback matrix, because they may converge slowly on some datasets.

4 Insights and discussions

4.1 Advantages of matrix completion-basedmethods

In this paper, we start the survey from the concept of low-rank matrix completion problems.
Although the real-world applications are diverse, most techniques of recommender systems
can be formulated as matrix completion problems that attempt to recover the missing values
in incomplete feedback matrices. This is because that the large amount of user feedback data
naturally come into being various huge incomplete matrices. It is beneficial for researchers
to look into the recommender systems by starting from a well-defined optimization problem,

123

26 Z. Chen, S. Wang

Table 8 Average runtime (seconds) of matrix completion algorithms on all tested datasets

FilmTrust ML-100K ML-1M Netflix Epinions Jester

NMF [34] 47 158 1184 125 193 464

SVD++ [44] 174 298 1419 369 204 579

LLORMA [50] 56 73 412 145 88 50

AutoRec [65] 7085 16,111 700,344 36,546 39,813 239,740

GCMC [75] 1033 2311 4031 4268 6621 5534

sRGCNN [76] 895 1570 4293 3321 5439 6543

IRNN [84] 391 155 4530 470 42125 20

DNNR [85] 739 108 5030 474 30579 7

MSS [89] 377 56 8024 279 2338 4

ISVTA [95] 1980 172 7165 691 39533 548

ItemKNN 4 3 23 3 28 3

SLIM [47] 452 2626 43187 2603 956 1210

FISM [48] 2775 2880 39937 5697 22478 1344

Cofactor [56] 157 442 7967 73 4758 306

CDAE [66] 1031 697 4854 1287 8864 720

DMF [72] 4113 17258 52861 35578 70985 1913

SpectralCF [73] 2342 3513 5412 4298 7734 4523

NGCF [77] 1239 4321 6753 4659 6985 5576

so that researchers that are new in this field can easily follow previous works. Consequently,
in real-world applications, we first need to consider how to transform the problems of rec-
ommender systems into matrix completion optimization. Besides, as the rank optimization
problems we have discussed in Sect. 2.4, a method developed via the concept of matrix
completion tends to have better interpretability and can be solved by traditional iterative
optimization methods, not limited to the deep learning methods that may lack theoretical
explanation. Despite the fact that deep learning has achieved promising improvements in
recommender systems, we encourage researchers to explore related algorithms from the con-
cept of traditional matrix completion algorithms, because it is still a vital learning problem
and may inspire us to develop new neural network structures with better interpretability. We
will discuss these in the next subsection.

Besides, in real-world applications, although some recommender systems do not need to
predict the missing values in user–item interaction matrices, techniques of matrix completion
still play an essential role inmany scenarios. For example,matrix factorization-basedmethods
which decompose the observed user–item interaction matrices into latent factors of users and
items for extracting underlying features, are widely utilized in context-aware [99–101] and
sequential recommender systems [102–104]. Therefore, a more in-depth study of matrix
completion can help the development of other related techniques for recommender systems.

4.2 Challenges and potential future directions

Traditional Machine LearningMethods First of all, we conclude the methods tested in our
experiments. Table 9 shows the brief comparison for all experimented models. As we have
analyzed in detail before, traditional convex optimization models like matrix factorization

123

A review on matrix completion for recommender systems 27

Ta
bl
e
9

T
he

br
ie
f
co
m
pa
ri
so
n
fo
r
al
la
lg
or
ith

m
s
in

ou
r
ex
pe
ri
m
en
ts

A
lg
or
ith

m
s

R
at
in
g/
To

p-
k

Ty
pe
s
of

m
od
el

C
ha
ra
ct
er
is
tic

N
M
F
[3
4]

R
at
in
g

M
at
ri
x
fa
ct
or
iz
at
io
n
m
od
el

L
at
en
tf
ac
to
rs
ar
e
su
bj
ec
tt
o
be

no
nn
eg
at
iv
e

SV
D
+
+
[4
4]

R
at
in
g

M
at
ri
x
fa
ct
or
iz
at
io
n
m
od
el

A
pp
ly

bo
th

ex
pl
ic
it
fe
ed
ba
ck

an
d
im

pl
ic
it
fe
ed
ba
ck

L
L
O
R
M
A
[5
0]

R
at
in
g

M
at
ri
x
fa
ct
or
iz
at
io
n
m
od
el

A
ss
um

e
th
at
m
at
ri
x
sh
ou
ld

be
lo
w
-r
an
k
lo
ca
lly

FI
SM

[4
8]

To
p-
k

M
at
ri
x
fa
ct
or
iz
at
io
n
m
od
el

L
ea
rn

ite
m

re
pr
es
en
ta
tio

ns
fo
r
es
tim

at
io
n

C
of
ac
to
r
[5
6]

To
p-
k

M
at
ri
x
fa
ct
or
iz
at
io
n
m
od

el
In
tr
od

uc
e
in
to

w
or
d
em

be
dd

in
g
m
od

el

A
ut
oR

ec
[6
5]

R
at
in
g

N
eu
ra
ln

et
w
or
k
m
od

el
A
pp

ly
au
to
en
co
de
r
fr
am

ew
or
k

C
D
A
E
[6
6]

To
p-
k

N
eu
ra
ln

et
w
or
k
m
od

el
A
pp

ly
D
A
E
fr
am

ew
or
k

D
M
F
[7
2]

To
p-
k

N
eu
ra
ln

et
w
or
k
m
od
el

A
pp
ly

a
pa
ra
lle
lD

N
N
fr
am

ew
or
k
fo
r
L
FM

G
C
M
C
[7
5]

R
at
in
g

N
eu
ra
ln

et
w
or
k
m
od

el
A
pp

ly
gr
ap
h
au
to
en
co
de
r
fr
am

ew
or
k

sR
G
C
N
N
[7
6]

R
at
in
g

N
eu
ra
ln

et
w
or
k
m
od

el
C
om

bi
ne

G
C
N
an
d
R
N
N

Sp
ec
tr
al
C
F
[7
3]

To
p-
k

N
eu
ra
ln

et
w
or
k
m
od
el

D
is
co
ve
r
de
ep

co
nn
ec
tio

ns
be
tw
ee
n
us
er
s
an
d
ite
m
s
in

th
e
sp
ec
tr
al
do
m
ai
n

N
G
C
F
[7
7]

To
p-
k

N
eu
ra
ln

et
w
or
k
m
od
el

E
xp
lo
it
th
e
us
er
–i
te
m

gr
ap
h
by

pr
op
ag
at
in
g
em

be
dd
in
gs

on
it

It
em

-K
N
N

To
p-
k

K
N
N
-b
as
ed

m
od

el
Pr
ed
ic
tr
an
ki
ng

fr
om

ne
ig
hb

or
s

SL
IM

[4
7]

To
p-
k

K
N
N
-b
as
ed

m
od
el

L
ea
rn

sp
ar
se

ite
m
-b
as
ed

si
m
ila
ri
ty

IR
N
N
[8
4]

R
at
in
g

R
an
k
m
in
im

iz
at
io
n
m
od
el

L
ea
rn

w
ei
gh
te
d
si
ng
ul
ar

va
lu
e
co
ns
tr
ai
nt

D
N
N
R
[8
5]

R
at
in
g

R
an
k
m
in
im

iz
at
io
n
m
od

el
L
ea
rn

do
ub

le
no

nc
on
ve
x
no

ns
m
oo

th
co
ns
tr
ai
nt

on
si
ng

ul
ar

va
lu
es

M
SS

[8
9]

R
at
in
g

R
an
k
m
in
im

iz
at
io
n
m
od

el
L
ea
rn

lo
w
-r
an
k
pr
op

er
ty

w
ith

de
co
m
po

se
d
fa
ct
or
s

IS
V
TA

[9
5]

R
at
in
g

R
an
k
m
in
im

iz
at
io
n
m
od
el

O
pt
im

iz
e
m
od
ifi
ed

Sc
ha
tte
n-
p
no
rm

w
ith

ite
ra
tiv

e
SV

T
al
go
ri
th
m

123

28 Z. Chen, S. Wang

models and rank minimization models still play important roles in recommender systems,
and achieve performance that is competitive with or even superior to the deep learning-
based models. For rating prediction, SVD++ which exploits both latent factor information
and neighborhood coefficients has higher accuracy on most datasets. KNN-based models
such as SLIM and Item-KNN gain excellent performance in ranking tasks with smaller time
cost. This points out that KNN-based matrix completion methods generally gain pleasurable
accuracy in top-k recommendation tasks, owing to the fact that KNN methods are virtually
designed for recommending top-k items. These experimental results indicate that traditional
ideas of machine learning are still effective in recommender systems. The observation also
reveals that conducting matrix completion via exploring neighborhood relationships is prof-
itable to both rating and ranking tasks. We may discover more interpretable and effective
models based on machine learning techniques, such as kernel learning, Bayesian learning
and clustering. However, the time complexity for some of these methods is high, especially
for rank optimization methods. Most rank minimization methods require conducting SVD
(O(min(m, n)mn)) of the original matrix at each iteration, and runtime for most similarity
measures is O(n2) and O(m2) or higher. The time complexity of most popular neural net-
works is at least O(max(n,m)3). As a result, these methods are not suitable for large-scale
recommender system datasets. In light of this, how to reduce the computational complexity of
recommendation algorithms requires further study. As a matter of fact, LLORMA and MSS
that we discussed have attempted to reduce the runtime by avoiding conducting computation
on the entire matrix, and decomposing the original optimization problem into several sub-
problems. The idea of the divide and conquer algorithm can be considered to accelerate the
speed of models.

Deep learning methods Due to the rapid development of deep learning, many methods
implemented with deep learning have appeared [105]. Most neural networks are applied
for extracting features or generating user/item profiles. Not limited to rating matrices, net-
works like CNN and RNN are widely used for feature engineering on image, audio or text
inputs. The extracted features are either used in content-based CF methods or applied as
side information. However, most effective deep learning methods seem to need profound
understandings of neural networks and substantial trials of experiments, which are tough for
researchers to develop a model with theoretical guarantees. Recent study also points out that
recommender systems built via neural networks may not perform well compared with tradi-
tional iterative machine learning algorithms [106], and we have also found this phenomenon
in our experiments.

Consequently, how to integrate traditional machine learning methods into state-of-the-art
techniques like deep learning becomes an interesting direction. Some deep learning models
are associated with traditional matrix factorization models. For example, DMF that we have
discussed conducts matrix factorization with deep neural networks and computes the prefer-
ence of users with cosine similarity measure. Hence, it is a valuable research direction that
we may transform traditional models into deep learning frameworks, because deep learning
frameworks inspired by traditional iterative optimization problems generally have better the-
oretical guarantees. However, most matrix completion optimization problems are based on
nonconvex and nondifferentiable optimization objectives, and deep learning methods have
difficulties in dealing with these problems. l1 norm which promotes sparse solutions and
nuclear norm which generates low-rank solutions in rank minimization problems are typical
examples. The nonsmooth and nondifferentiable properties of these constraints make the
gradient descent and backpropagation algorithms not applicable. Although some works have
investigated on transforming traditional optimization algorithms into deep learning frame-

123

A review on matrix completion for recommender systems 29

works [107–110], to our knowledge, there is limited study on handling rank constraints with
neural networks. Therefore, how to construct a deep learning framework following the spirits
of traditional iterative optimization methods is also a potential direction.

Cold start issues: The performance of most compared models declines due to the sparsity of
the user–item feedbackmatrix, as we have analyzed in experiments. This phenomenon can be
regarded as the cold start issue, which has become the primary problem since recommender
systems appeared. Generally, it is impossible for users to provide feedback on most items
in the database. In real-world applications, it is common to find that a user only has rated
a few (even one or two) of millions of items. Thus, the cold start challenges in practical
applications are far more severe than experiments on benchmark datasets. Inspired by the
excellent performance of SVD++, wemay consider exploring more models adopting implicit
feedback or side information for matrix completion of recommender systems, which are
useful for generating user or item profiles to address the cold start issues. Side information
can also be obtained from social relationships, geographic locations, user shopping history,
and even time sequences. More embedding methods for these side information are also
important for building a more interpretable model, so that unknown values in an incomplete
matrix can be predicted more accurately.

5 Conclusion

In this paper,we looked into different types ofmatrix completion algorithms, includingmatrix
factorizationmodels, neural networkmodels, and rankminimizationmodels.We investigated
these methods and discussed the characteristics and improvements. Finally, we introduced
different evaluation measurements for recommender systems and used them to evaluate the
performance of different algorithms on varying datasets. Some shared hyperparameters were
experimented and discussed for investigation. Inspired by experiments and existing research,
we further provided insights and potential directions of matrix completion on recommender
systems for readers. We believe that a combination of traditional optimization problems in
machine learning and popular neural networks will further improve the accuracy of matrix
completion. Nowadays, recommender systems are playing more and more critical roles in
data mining to discover useful messages and provide suggestions for people. We will explore
more efficient algorithms for recommender systems with regard to matrix completion in the
future.

Acknowledgements Thisworkwas supported by theNationalNatural Science Foundation ofChina (Grant no.
U1705262) and Natural Science Foundation of Fujian Province (Grant nos. 2020J01130193 and 2018J07005).

References

1. Batmaz Z, Yurekli A, Bilge A, Kaleli C (2019) A review on deep learning for recommender systems:
challenges and remedies. Artif Intell Rev 52(1):1–37

2. Sun Y, Guo G, Chen X, Zhang P, Wang X (2020) Exploiting review embedding and user attention for
item recommendation. Knowl Inform Syst 1–24

3. Hashemi SM, Rahmati M (2020) Cross-domain recommender system using generalized canonical cor-
relation analysis. Knowl Inf Syst 62(12):4625–4651

4. PapagelisM, Plexousakis D, Kutsuras T (2005)Alleviating the sparsity problem of collaborative filtering
using trust inferences. Trust Manag 224–239

123

30 Z. Chen, S. Wang

5. Martinez L, Rodriguez RM, Espinilla M, Reja (2009) A georeferenced hybrid recommender system
for restaurants, in: Proceedings of the 2009 IEEE/WIC/ACM international joint conference on web
intelligence and intelligent agent technology, pp 187–190

6. Singh M (2020) Scalability and sparsity issues in recommender datasets: a survey. Knowl Inf Syst
62(1):1–43

7. Huang Z, Chen H, Zeng D (2004) Applying associative retrieval techniques to alleviate the sparsity
problem in collaborative filtering. ACM Trans Inf Syst 22(1):116–142

8. Moshfeghi Y, Piwowarski B, Jose JM (2011) Handling data sparsity in collaborative filtering using
emotion and semantic based features. In: Proceedings of the 34th international ACM SIGIR conference
on research and development in information retrieval, pp 625–634

9. Li B, Yang Q, Xue X (2009) Canmovies and books collaborate? Cross-domain collaborative filtering for
sparsity reduction. In: Proceedings of the 21th international joint conference on artificial intelligence,
vol 9, pp 2052–2057

10. Raza S, Ding C (2019) Progress in context-aware recommender systems–an overview. Comput Sci Rev
31:84–97

11. Palomares I, Browne F, Davis P (2018) Multi-view fuzzy information fusion in collaborative filtering
recommender systems: application to the urban resilience domain. Data Knowl Eng 113:64–80

12. KorenY, Bell R, VolinskyC (2009)Matrix factorization techniques for recommender systems. Computer
42(8):30–37

13. Miller BN, Konstan JA, Riedl J (2004) Pocketlens: toward a personal recommender system. ACM Trans
Inf Syst 22(3):437–476

14. Champiri ZD, Asemi A, Binti SSS (2019) Meta-analysis of evaluation methods and metrics used in
context-aware scholarly recommender systems. Knowl Inf Syst 61(2):1147–1178

15. Kulkarni S, Rodd SF (2020) Context aware recommendation systems: a review of the state of the art
techniques. Comput Sci Rev 37:100255

16. Shokeen J,RanaC (2020)A study on features of social recommender systems.Artif Intell Rev 53(2):965–
988

17. Khan ZY, Niu Z, Sandiwarno S, Prince R (2020) Deep learning techniques for rating prediction: a survey
of the state-of-the-art. Artif Intell Rev 1–41

18. Elahi M, Ricci F, Rubens N (2016) A survey of active learning in collaborative filtering recommender
systems. Comput Sci Rev 20:29–50

19. Coba L, Symeonidis P, Zanker M (2019) Personalised novel and explainable matrix factorisation. Data
Knowl Eng 122:142–158

20. Si M, Li Q (2020) Shilling attacks against collaborative recommender systems: a review. Artif Intell Rev
53(1):291–319

21. Ali Z, Qi G, Kefalas P, Abro WA, Ali B (2020) A graph-based taxonomy of citation recommendation
models. Artif Intell Rev 1–44

22. Dax A (2014) Imputing missing entries of a data matrix: a review. J Adv Comput 3(3):98–222
23. Gurini DF, Gasparetti F, Micarelli A, Sansonetti G (2018) Temporal people-to-people recommendation

on social networks with sentiment-based matrix factorization. Futur Gener Comput Syst 78:430–439
24. Nguyen LT, Kim J, Shim B (2019) Low-rank matrix completion: a contemporary survey. IEEE Access

7:94215–94237
25. Chen Z, Zhao W, Wang S (2021) Kernel meets recommender systems: a multi-kernel interpolation for

matrix completion. Expert Syst Appl 168:114436
26. Wang Y, Zhang Y (2013) Nonnegative matrix factorization: a comprehensive review. IEEE Trans Knowl

Data Eng 25(6):1336–1353
27. Da’u A, Salim N (2019) Recommendation system based on deep learning methods: a systematic review

and new directions. Artif Intell Rev 1–40
28. Cheng H-T, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, Anderson G, Corrado G, Chai W, Ispir

M, et al. (2016) Wide & deep learning for recommender systems. In: Proceedings of the 1st workshop
on deep learning for recommender systems, pp 7–10

29. Covington P, Adams J, Sargin E (2016) Deep neural networks for youtube recommendations. In: Pro-
ceedings of the 10th ACM conference on recommender systems, pp 191–198

30. He X, Liao L, Zhang H, Nie L, Hu X, Chua T-S (2017) Neural collaborative filtering. In: Proceedings
of the 26th international conference on World Wide Web, pp 173–182

31. Gu Q, Trzasko JD, Banerjee A (2019) Scalable algorithms for locally low-rank matrix modeling. Knowl
Inf Syst 61(3):1457–1484

32. Nie F,HuangH,DingCHQ (2012) Low-rankmatrix recovery via efficient schatten p-normminimization.
In: Proceedings of the 26th AAAI conference on artificial intelligence

123

A review on matrix completion for recommender systems 31

33. Shijila B, Tom AJ, George SN (2019) Simultaneous denoising and moving object detection using low
rank approximation. Futur Gener Comput Syst 90:198–210

34. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature
401(6755):788

35. Lee DD, Seung HS (1997) Unsupervised learning by convex and conic coding. In: Advances in neural
information processing systems, pp 515–521

36. Fu L, Chen Z, Huang S, Huang S, Wang S (2021) Multi-view learning via low-rank tensor optimization.
In: Proceedings of the 2021 IEEE international conference on multimedia and expo, pp 1–6

37. Chen J, Fang J, LiuW, Tang T, Yang C (2020) clmf: A fine-grained and portable alternating least squares
algorithm for parallel matrix factorization. Futur Gener Comput Syst 108:1192–1205

38. Cai J-F, Candès EJ, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM
J Optim 20(4):1956–1982

39. Wright J, Ganesh A, Rao SR, PengY,MaY (2009) Robust principal component analysis: Exact recovery
of corrupted low-rank matrices via convex optimization. In: Proceedings of the 23rd annual conference
on neural information processing systems 2009, pp 2080–2088

40. Shang F, Cheng J, Liu Y, Luo Z, Lin Z (2018) Bilinear factor matrix norm minimization for robust PCA:
algorithms and applications. IEEE Trans Pattern Anal Mach Intell 40(9):2066–2080

41. Paatero P (1997) Least squares formulation of robust non-negative factor analysis. Chemom Intell Lab
Syst 37(1):23–35

42. Kivinen J, Warmuth MK (1995) Additive versus exponentiated gradient updates for linear prediction.
In: ACM Press the 27th annual ACM symposium, pp 209–218

43. Benesty J, Chen J, Huang Y, Cohen I (2009) Pearson correlation coefficient. In: Noise reduction in
speech processing, pp 1–4

44. Koren Y (2008) Factorization meets the neighborhood: A multifaceted collaborative filtering model.
In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data
mining, pp 426–434

45. Mnih A, Salakhutdinov RR (2008) Probabilistic matrix factorization. In: Advances in neural information
processing systems, pp 1257–1264

46. Bell RM, Koren Y (2007) Lessons from the netflix prize challenge. ACM SIGKDD Explorations Newsl
9(2):75–79

47. Ning X, Karypis G (2011) Slim: Sparse linear methods for top-n recommender systems. In: 2011 11th
IEEE international conference on data mining, pp 497–506

48. Kabbur S, Ning X, Karypis G (2013) Fism: Factored item similarity models for top-n recommender
systems. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery
and data mining, pp 659–667

49. Saad D (1998) Online algorithms and stochastic approximations, Online. Learning 5:3–6
50. Lee J, Kim S, Lebanon G, Singer Y (2013) Local low-rank matrix approximation. In: Proceedings of

the 30th international conference on machine learning, vol 28, pp 82–90
51. Wand MP, Jones MC (1995) Kernel smoothing
52. Bian J, Gao B, Liu T-Y (2014) Knowledge-powered deep learning for word embedding. In: Proceedings

of the joint European conference onmachine learning and knowledge discovery in databases, pp 132–148
53. Shin B, Yang H, Choi JD (2019) The pupil has become the master: Teacher-student model-based word

embedding distillation with ensemble learning. In: Proceedings of the 28th international joint conference
on artificial intelligence, pp 3439–3445

54. Zhou T, Sedoc J, Rodu J (2019) Getting in shape: Word embedding subspaces. In: Proceedings of the
28th international joint conference on artificial intelligence, pp 5478–5484

55. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and
phrases and their compositionality. In: Advances in neural information processing systems, pp 3111–
3119

56. Liang D, Altosaar J, Charlin L, Blei DM (2016) Factorization meets the item embedding: Regular-
izing matrix factorization with item co-occurrence. In: Proceedings of the 10th ACM conference on
recommender systems, pp 59–66

57. Church KW, Hanks P (1990) Word association norms, mutual information, and lexicography. Comput
Linguist 16(1):22–29

58. Levy O, Goldberg Y (2014) Neural word embedding as implicit matrix factorization. In: Advances in
neural information processing systems, pp 2177–2185

59. Liou C, Cheng W, Liou J, Liou D (2014) Autoencoder for words. Neurocomputing 139:84–96
60. Ap SC, Lauly S, Larochelle H, Khapra M, Ravindran B, Raykar VC, Saha A (2014) An autoencoder

approach to learning bilingual word representations. In: Advances in neural information processing
systems, pp 1853–1861

123

32 Z. Chen, S. Wang

61. Socher R, Huang EH, Pennin J, Manning CD, Ng AY (2011) Dynamic pooling and unfolding recursive
autoencoders for paraphrase detection. In: Advances in neural information processing systems, pp 801–
809

62. Zhang J, Shan S, Kan M, Chen X (2014) Coarse-to-fine auto-encoder networks (cfan) for real-time face
alignment, in. Eur Conf Comput Vis 8690:1–16

63. Walker J, Doersch C, Gupta A, Hebert M (2016) An uncertain future: forecasting from static images
using variational autoencoders, in. Eur Conf Comput Vis 9911:835–851

64. Tewari A, Zollhofer M, Kim H, Garrido P, Bernard F, Perez P, Theobalt C (2017) Mofa: Model-based
deep convolutional face autoencoder for unsupervised monocular reconstruction. In: Proceedings of the
IEEE international conference on computer vision, pp 3715–3724

65. Sedhain S, Menon AK, Sanner S, Xie L (2015) Autorec: autoencoders meet collaborative filtering. In:
Proceedings of the 24th international conference on World Wide Web, pp 111–112

66. Wu Y, DuBois C, Zheng AX, Ester M (2016) Collaborative denoising auto-encoders for top-n recom-
mender systems, in: Proceedings of the 9th ACM international conference on Web Search and Data
Mining, pp 153–162

67. Pan Y, He F, Yu H (2020) A correlative denoising autoencoder to model social influence for top-n
recommender system. Front Comp Sci 14(3):143301

68. Wang H, Shi X, Yeung D-Y (2015) Relational stacked denoising autoencoder for tag recommendation.
In: Proceedings of the 29th AAAI conference on artificial intelligence, pp 3052–3058

69. Ishii T, Komiyama H, Shinozaki T, Horiuchi Y, Kuroiwa S (2013) Reverberant speech recognition based
on denoising autoencoder. In: Interspeech, pp 3512–3516

70. Vincent P, Larochelle H, Bengio Y, Manzagol P-A (2008) Extracting and composing robust features
with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning,
pp 1096–1103

71. Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic
optimization. J Mach Learn Res 12(Jul):2121–2159

72. Xue H, Dai X, Zhang J, Huang S, Chen J (2017) Deep matrix factorization models for recommender
systems. In: Proceedings of the 26th international joint conference on artificial intelligence, pp 3203–
3209

73. Zheng L, Lu C-T, Jiang F, Zhang J, Yu PS (2018) Spectral collaborative filtering. In: Proceedings of the
12th ACM conference on recommender systems, pp 311–319

74. Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: Pro-
ceedings of the 5th international conference on learning representations

75. Berg Rvd, Kipf TN, Welling M (2017) Graph convolutional matrix completion, arXiv preprint
arXiv:1706.02263

76. Monti F, Bronstein MM, Bresson X (2017) Geometric matrix completion with recurrent multi-graph
neural networks. In: Advances in neural information processing systems, pp 3697–3707

77. Wang X, He X, Wang M, Feng F, Chua T-S (2019) Neural graph collaborative filtering. In: Proceedings
of the 42nd international ACM SIGIR conference on research and development in information retrieval,
pp 165–174

78. Frank LE, Friedman JH (1993) A statistical view of some chemometrics regression tools. Technometrics
35(2):109–135

79. Friedman JH (2012) Fast sparse regression and classification. Int J Forecast 28(3):722–738
80. Geman D, Yang C (1995) Nonlinear image recovery with half-quadratic regularization. IEEE Trans

Image Process 4(7):932–946
81. Trzasko JD, Manduca A (2009) Highly undersampled magnetic resonance image reconstruction via

homotopic �0 -minimization. IEEE Trans Med Imaging 28(1):106–121
82. Gao C, Wang N, Yu QR, Zhang Z (2011) A feasible nonconvex relaxation approach to feature selection.

In: Proceedings of the 25th AAAI conference on artificial intelligence, pp 356–361
83. Border K (2001) The supergradient of a concave function, http://www.hss.caltech.edu/-kcb/Notes/

Supergrad.pdf
84. Lu C, Tang J, Yan S, Lin Z (2014) Generalized nonconvex nonsmooth low-rank minimization. In:

Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4130–4137
85. ZhangH,GongC,Qian J, ZhangB,XuC,Yang J (2019) Efficient recovery of low-rankmatrix via double

nonconvex nonsmooth rank minimization. IEEE Trans Neural Netw Learn Syst 30(10):2916–2925
86. ZhangH, Yang J, Shang F, Gong C, Zhang Z (2018) Lrr for subspace segmentation via tractable schatten-

p norm minimization and factorization. IEEE Trans Cybern 49(5):1722–1734
87. Cao W, Sun J, Xu Z (2013) Fast image deconvolution using closed-form thresholding formulas of lq (q

= 1/2, 2/3) regularization. J Vis Commun Image Represent 24(1):31–41

123

http://arxiv.org/abs/1706.02263
http://www.hss.caltech.edu/-kcb/Notes/Supergrad.pdf
http://www.hss.caltech.edu/-kcb/Notes/Supergrad.pdf

A review on matrix completion for recommender systems 33

88. LuoL,Yang J, Qian J, TaiY, LuG-F (2016)Robust image regression based on the extendedmatrix variate
power exponential distribution of dependent noise. IEEE Trans Neural Netw Learn Syst 28(9):2168–
2182

89. Xu C, Lin Z, Zha H (2017) A unified convex surrogate for the schatten-p norm. In: Proceedings of the
thirty-First AAAI conference on artificial intelligence, pp 926–932

90. Srebro N, Rennie JDM, Jaakkola TS (2004) Maximum-margin matrix factorization. Adv Neural Inf
Process Syst 17:1329–1336

91. Shang F, Liu Y, Cheng J (2016) Scalable algorithms for tractable schatten quasi-norm minimization. In:
Proceedings of the 30th AAAI conference on artificial intelligence, pp 2016–2022

92. Shang F, Liu Y, Cheng J (2016) Tractable and scalable schatten quasi-norm approximations for rank
minimization. In: Proceedings of the 19th international conference on artificial intelligence and statistics,
vol 51, pp 620–629

93. Bolte J, Sabach S, Teboulle M (2014) Proximal alternating linearized minimization for nonconvex and
nonsmooth problems. Math Program 146(1–2):459–494

94. Xu Y, Yin W (2013) A block coordinate descent method for regularized multiconvex optimization with
applications to nonnegative tensor factorization and completion. SIAM J Imag Sci 6(3):1758–1789

95. Zhang H, Qian J, Zhang B, Yang J, Gong C, Wei Y (2020) Low-rank matrix recovery via modified
schatten-p norm minimization with convergence guarantees. IEEE Trans Image Process 29:3132–3142

96. Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (mae) over the root mean square
error (rmse) in assessing average model performance. Climate Res 30(1):79–82

97. Järvelin K, Kekäläinen J (2002) Cumulated gain-based evaluation of ir techniques. ACM Trans Inf Syst
20(4):422–446

98. Powers DM (2011) Evaluation: from precision, recall and f-measure to roc, informedness, markedness
and correlation. J Mach Learn Technol 2(1):37–63

99. Baltrunas L, Ludwig B, Ricci F (2011) Matrix factorization techniques for context aware recommenda-
tion. In: Proceedings of the ACM conference on recommender systems, pp 301–304

100. Hidasi B, Tikk D (2016) General factorization framework for context-aware recommendations. Data
Min Knowl Disc 30(2):342–371

101. Unger M, Bar A, Shapira B, Rokach L (2016) Towards latent context-aware recommendation systems.
Knowl Based Syst 104:165–178

102. Rendle S, Freudenthaler C, Schmidt-Thieme L (2010) Factorizing personalized Markov chains for next-
basket recommendation. In: Proceedings of the 19th international conference on World Wide Web, pp
811–820

103. Yu H, Hsieh C, Si S, Dhillon IS (2014) Parallel matrix factorization for recommender systems. Knowl
Inf Syst 41(3):793–819

104. Wu H, Zhang Z, Yue K, Zhang B, He J, Sun L (2018) Dual-regularized matrix factorization with deep
neural networks for recommender systems. Knowl Based Syst 145:46–58

105. Zhang S, Yao L, Sun A, Tay Y (2019) Deep learning based recommender system: a survey and new
perspectives. ACM Comput Surv 52(1):5:1–5:38

106. Dacrema MF, Cremonesi P, Jannach D (2019) Are we really making much progress? A worrying anal-
ysis of recent neural recommendation approaches. In: Proceedings of the 13th ACM conference on
recommender systems, pp 101–109

107. Wang S, Chen Z, Du S, Lin Z (2021) Learning deep sparse regularizers with applications to multi-view
clustering and semi-supervised classification. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.
1109/TPAMI.2021.3082632

108. Xie X, Wu J, Liu G, Zhong Z, Lin Z (2019) Differentiable linearized ADMM. In: Proceedings of the
26th international conference on machine learning, pp 6902–6911

109. Yang Y, Sun J, Li H, Z. (2016) Xu, Deep admm-net for compressive sensingMRI. In: Advances in neural
information processing systems, pp 10–18

110. Gregor K, LeCun Y (2010) Learning fast approximations of sparse coding. In: Proceedings of the
twenty-seventh international conference on machine learning, pp. 399–406

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1109/TPAMI.2021.3082632
https://doi.org/10.1109/TPAMI.2021.3082632

34 Z. Chen, S. Wang

Zhaoliang Chen received his B.S. degree from the College of Math-
ematics and Computer Science, Fuzhou University, Fuzhou, China
in 2019. He is currently pursuing the Ph.D degree with the College
of Mathematics and Computer Science, Fuzhou University, Fuzhou,
China. His current research interests include machine learning, deep
learning and recommender systems.

Shiping Wang received his Ph.D. degree from the School of Computer
Science and Engineering, University of Electronic Science and Tech-
nology of China, Chengdu, China in 2014. He worked as a research fel-
low in Nanyang Technological University from August 2015 to August
2016. He is currently a Full Professor and Qishan Scholar with the Col-
lege of Mathematics and Computer Science, Fuzhou University. His
research interests include machine learning, computer vision and gran-
ular computing.

123

	A review on matrix completion for recommender systems
	Abstract
	1 Introduction
	2 Matrix completion methods
	2.1 Problem formulation
	2.2 Matrix factorization models
	2.2.1 NMF
	2.2.2 SVD++
	2.2.3 SLIM and FISM
	2.2.4 LLORMA
	2.2.5 Cofactor

	2.3 Neural network models
	2.3.1 AutoRec
	2.3.2 CDAE
	2.3.3 DMF
	2.3.4 Graph-based methods

	2.4 Rank minimization models
	2.4.1 IRNN
	2.4.2 DNNR
	2.4.3 MSS
	2.4.4 ISVTA

	3 Experiments
	3.1 Datasets description
	3.2 Performance evaluation
	3.3 Performance comparison

	4 Insights and discussions
	4.1 Advantages of matrix completion-based methods
	4.2 Challenges and potential future directions

	5 Conclusion
	Acknowledgements
	References

