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ABSTRACT

In tensor-based multi-view learning methods, the self-
representation based subspace clustering is widely re-
searched, which is effective but heavy in high computational
complexity. Furthermore, most of approaches learn the low-
rank tensor representation and the final affinity matrix sepa-
rately and ignore the difference between views. In this paper,
we construct the target tensor composed of multiple normal-
ized similarity matrices based on the Gaussian kernel func-
tion, which is constrained with the t-SVD based tensor nu-
clear norm to recover the low-rank part. The final affinity ma-
trix is simultaneously learned via weighted multi-view fusion
while optimizing the low-rank tensor, which suggests that
each view is distributed to an adaptive weight. Moreover, the
proposed method can be extended to semi-supervised classifi-
cation through the collaborative optimization of the similarity
tensor and the label indicator matrix. Extensive experiments
conducted on four real-world datasets demonstrate the supe-
riority of the proposed method compared with other state-of-
the-art methods.

Index Terms— Multi-view clustering, semi-supervised
classification, tensor nuclear norm, low-rank tensor

1. INTRODUCTION

Multi-view data have become a crucial data format with
the rapid development of multi-media services and feature en-
gineering techniques, owing to the fact that representations of
multiple views depict data more comprehensively than single
view. In light of this, a growing number of clustering and
semi-supervised classification methods based on multi-view
learning paradigms have been developed in the last decades.

Substantial researches have revealed the encouraging per-
formance of multi-view clustering. For instance, Xia et al.
[1] was devoted to optimizing a potential low-rank transi-
tion probability matrix as the input of spectral clustering by
Markov chain. Luo et al. [2] regarded multi-view data as
the combination of the consistent component and the specific
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components, which were jointly exploited for subspace rep-
resentation learning. Chen et al. [3] explored the latent em-
bedding space from multiple views, and then the subspace
representation was learned. Zhang et al. [4] performed multi-
view clustering by exploring the latent representation from
multiple views. In a nutshell, all of these multi-view learning
methods concentrated on discovering the latent representa-
tions from multi-view data. In practical applications, data are
accompanied with a small number of labeled samples. Multi-
view semi-supervised classification aims to utilize multi-view
data to classify samples under the supervision of partially
labeled data. Tao et al. [5] proposed a regression-based
loss function for each view that was combined with adaptive
weights. Nie et al. [6] considered the effect of noisy entries
and learned the local structure of data for better classification.
Wang et al. [7] proposed an auto-weighted manifold embed-
ding method to tackle multi-view semi-supervised classifica-
tion problems.

Different from multi-view methods mentioned above,
low-rank tensor learning mines the complementary and dis-
criminant information of multi-view data from tensor aspect
rather than matrix aspect, which discovers the high-order cor-
relations between views from a global perspective. Zhang et
al. [8] imposed the sum of nuclear norms (SNN) on the sub-
space representation tensor to recover the low-rank property.
Wang et al. [9] paid attention to preserving the data struc-
ture to handle the high dimensional data while optimizing the
coefficient tensor. Sun et al. [10] presented a tensor logregu-
larizer (TLR) to better approximate the tensor rank in terms of
multi-view subspace clustering. Although tensor-based meth-
ods have achieved encouraging results, there are still some
problems to be addressed. Firstly, most tensor-based meth-
ods use subspace representations to construct the target ten-
sor, which makes the optimization process time-consuming.
Then, the ultimate affinity matrix and the low-rank tensor rep-
resentation are learned separately, thereby neglecting the de-
pendence between them. Finally, potential effects of low-rank
tensor learning for multi-view semi-supervised classification
should be further considered.

In this paper, we first assemble the Gaussian kernel-based
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normalized similarity matrices into the target tensor, after
which the t-SVD based tensor nuclear norm is adopted to ex-
plore the high-order correlations across views. This target
tensor construction method not only guarantees encouraging
performance but also improves the efficiency of the algorithm.
The diversity of different views is considered and each view is
allocated to an adaptive weight. Finally, the affinity matrix is
obtained via weighted multi-view fusion, which is combined
with low-rank tensor learning into a unified optimization pro-
cess. Furthermore, the proposed method can be extended to
semi-supervised classification tasks by the co-optimization of
the similarity tensor and label indicator matrix. The main con-
tributions are summarized as:

• A unified framework is proposed that can be applied to
both multi-view clustering and semi-supervised classi-
fication.

• The low-rank tensor representation and the weighted
multi-view fusion are integrated into a joint learning
process, where the weights are learned adaptively.

• Comprehensive experimental results reveal that the
proposed method outperforms other state-of-the-art
methods in clustering and classification tasks.

2. NOTATIONS AND PRELIMINARIES

In this section, the meanings of some notations and opera-
tions related to tensor are described in detail. Specifically, we
use X = {X(v)}mv=1 to denote the multi-view data, where m
is the number of views and X(v) ∈ Rn×d(v) . Bold lowercase
letters, bold capital letters and bold calligraphy letters (e.g., a,
A, A) represent vectors, matrices and tensors, respectively.
Given a third-order tensor A ∈ Rn1×n2×n3 , A(i) denotes
the i-th frontal slice of A and A(i) is comprised of vectors
of A along with the i-th dimension. AT ∈ Rn2×n1×n3 is
the transpose of A. Af = fft(A, [ ], 3) denotes the re-
sult of A along with the third dimension after fast Fourier
transformation (FFT). l2,1 norm of a tensor is defined as
‖A‖2,1 =

∑
i,j ‖A(i, j, :)‖2. For a better interpretation of

the t-SVD based tensor nuclear norm, some definitions about
tensor are clarified in advance.

Definition 1 (t-product): Given tensor M ∈ Rn1×n2×n3

and tensor N ∈ Rn2×n4×n3 , tensor B ∈ Rn1×n4×n3 is the
t-product result ofM andN

B =M ∗N = bvfold(bcirc(M) · bvec(N )), (1)

where bvfold, bcirc and bvec denote block-based operators
defined in [11].

Definition 2 (t-SVD): Tensor singular value decomposition
ofA ∈ Rn1×n2×n3 is defined as

A = U ∗D ∗ VT , (2)

whereU ∈ Rn1×n1×n3 andVT ∈ Rn2×n2×n3 are orthogonal
tensors ,D ∈ Rn1×n2×n3 is an f-diagonal tensor.

Definition 3 (t-SVD based tensor nuclear norm): The t-
SVD based tensor nuclear norm of A ∈ Rn1×n2×n3 is de-
fined as the sum of diagonal values of Df decomposed from
Af , that is,

‖A‖∗ =
min{n1,n2}∑

i=1

n3∑
j=1

|Df (i, i, j)|. (3)

3. THE PROPOSED METHOD

3.1. Problem formulation

For convenience, we first illustrate our model with a clus-
tering task. In the model, the initial normalized similarity ma-
trices with the Gaussian kernel function for each view are first
calculated, that is, Z(v) = D(v)−

1
2 K(v)D(v)−

1
2 , and D(v)

is a diagonal matrix defined as D
(v)
ii =

∑n
j=1 Kij . Then,

{Z(v)}mv=1 are combined into tensor Z . Inspired by [12], we
assume that tensor Z is composed of a low-rank tensor S
and an error tensor E . To capture complementary information
across views better, the dimensions of all tensors are rotated
from n × n ×m to n ×m × n. Furthermore, we obtain the
final affinity matrix via weighted multi-view fusion, and the
fusion process is integrated with the low-rank tensor learning
into a unified procedure. In light of above points, the objec-
tive function of the proposed method is written as

min
S,E,A,w(v)

‖S‖∗ + λ‖E‖2,1 + α

m∑
v=1

(w(v))r(‖S(v) −A‖2F )

s.t. Z = S + E,wT1 = 1, w(v) ≥ 0, v = 1, . . . ,m,

(4)

where ‖·‖∗ denotes tensor nuclear norm, ‖·‖2,1 represents l2,1
norm and handles the noises to enhance model stability. w(v)

is the weight of the i-th view and w is the vector constituted
of {w(v)}mv=1. The solved affinity matrix A is regarded as the
input of spectral clustering. λ > 0 and α > 0 are two penalty
parameters, respectively.

For classification tasks, the proposed objective func-
tion is still applicable without introducing any extra terms.
When the normalized similarity matrix Z(v) of each view
is solved, we splice it horizontally with the label matrix
F = [F1; . . . ;Fn] ∈ Rn×c to form [Z(v), F]∈ Rn×(n+c).
For each point xi, if xi belongs to the j-th cluster, we de-
fine Fij = 1 and Fij = 0 otherwise. Thus, we collect
{[Z(v),F]}mv=1 into a tensor as the input of the model. The
rotation of tensor is also performed, that is, the dimension
is adjusted from n × (n + c) × m to n × m × (n + c). If
data points belong to the same class in the low-rank tensor,
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the corresponding rows in matrices {[Z(v),F]}mv=1 tend to be
consistent, and the part of unknown label information in F
will be completed. After low-rank optimization, the final ma-
trix [A,F] is acquired. For each sample xi without label, its
label yi is computed by yi = argmaxj≤cFij .

Algorithm 1 Multi-view learning based on low-rank tensor
optimization (MLLTO)

Input: X =
{
X(1),X(2), . . . ,X(m)

}
, X(v) ∈ Rn×d(v) , λ,

α, and number of clusters c.
Output: Matrix A ∈ Rn×n for clustering and A ∈

Rn×(n+c) for classification.
1: Initialize G0 = S0 = E0 = Y0 = H0 = 0, w(v)

0 = 1
m ,

ω = 2, ε = 10−7, µ0 = β0 = 10−4, µmax = βmax =
1010, k = 0.

2: while not convergent do
3: Update Gk+1 by solving Eq. (7);
4: for v = 1 : m do
5: Update S

(v)
k+1 by solving Eq. (9);

6: end for
7: Update E(3)k+1 by solving Eq. (11);
8: Update w(v)

k+1 by solving Eq. (14);
9: Update Ak+1 by solving Eq. (16);

10: Update Yk+1, Hk+1, µk+1 and βk+1 by solving Eq.
(17);

11: Check the convergence conditions:
||Z − Sk+1 − Ek+1||∞ ≤ ε, ||Gk+1 − Sk+1||∞ ≤ ε,
||Ak+1 −Ak||∞ ≤ ε.

12: k = k + 1;
13: end while
14: return Matrix A.

3.2. Optimization

In order to solve Eq. (4) based on the alternating direction
method of multipliers (ADMM), the augmented Lagrangian
function of Eq. (4) is formulated as

F
(
S;E;G;A; {w(v)}mv=1

)
= ‖G‖∗ + λ‖E‖2,1 + α

m∑
v=1

(w(v))r‖S(v) −A‖2F+

〈Y ,Z − S − E〉+ µ

2
‖Z − S − E‖2F + 〈H,G − S〉

+
β

2
‖G − S‖2F ,

(5)

where G is an auxiliary variable and we have G = S, Y
andH are two Lagrange multipliers, µ and β are two penalty
parameters. Next, the updating rules of varying variables are
as follows.

Update G: When fixing S, E , A and {w(v)}mv=1, the

problem becomes

min
G
||G||∗ + 〈H,G − S〉+

β

2
‖G − S‖2F

= min
G
||G||∗ +

β

2
||G − (S − 1

β
H)||2F .

(6)

The closed-form solution of G can be obtained by the tensor
tubal-shrinkage operator T proposed in [13],

G∗ = Tm/β(S −
1

β
H). (7)

Update S: Updating tensor S is equivalent to updating each
frontal slice of S

min
S(v)

α(w(v))r‖S(v) −A‖2F + 〈Y(v),Z(v) − S(v) −E(v)〉

+
µ

2
‖Z(v) − S(v) −E(v)‖2F + 〈H(v),G(v) − S(v)〉

+
β

2
‖G(v) − S(v)‖2F .

(8)

Taking the partial derivative of S(v) and setting the value to
zero, we have

S(v)∗ =

2α(w(v))rA+ µ(Z(v) −E(v)) +Y(v) + βG(v) +H(v)

2α(w(v))r + µ+ β
.

(9)

Update E: Fixing the other variables, updating E is to
solve the following problem

min
E
λ‖E‖2,1 + 〈Y ,Z − S − E〉+

µ

2
‖Z − S − E‖2F

= min
E(3)

λ‖E(3)‖2,1 +
µ

2
‖E(3) − (Z(3) − S(3) +Y(3)/µ)‖2F .

(10)

Letting Z(3) − S(3) +Y(3)/µ = P, the closed-form solution
of E(3) according to [12] is presented as follows

E∗(3):,j =

{
||P:,j ||2−λµ
‖P:,j ||2 P:,j , ‖P:,j‖2 >

λ
µ ;

0, otherwise.
(11)

Update {w(v)}mv=1: When the terms irrelevant to
{w(v)}mv=1 are fixed, we have

min
w(v)

m∑
v=1

(w(v))r(‖S(v) −A‖2F ).

s.t. wT1 = 1, w(v) ≥ 0.

(12)

Assuming J(v) = ‖S(v) −A‖2F , the Lagrangian function of
Eq. (12) is formulated as

L =

m∑
v=1

(w(v))rJ(v) − η(
m∑
v=1

w(v) − 1). (13)

3

Authorized licensed use limited to: Fuzhou University. Downloaded on May 17,2022 at 05:39:10 UTC from IEEE Xplore.  Restrictions apply. 



Table 1: Comparison of experimental results on all datasets for multi-view clustering.

Method ALOI COIL-20 HW MSRC-v1
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

SPCbest 57.98 71.8 53.53 73.54 80.42 65.47 66.48 63.01 52.63 70.29 55.03 46.69
LRRbest 60.19 55.42 45.82 76.12 83.12 73.67 59.32 51.73 39.63 60.29 52.74 40.24

LTMSC 61.89 68.41 53.30 76.26 83.44 69.42 85.64 75.65 71.52 82.86 73.86 66.19
CSMSC 75.66 73.32 63.61 74.65 82.57 67.07 72.09 57.75 51.09 81.62 75.77 70.96

t-SVD-MSC 79.78 81.06 72.89 84.52 88.47 79.68 96.65 92.61 92.62 95.33 91.71 89.71
ETLMSC 72.23 77.48 65.06 87.72 94.78 86.29 85.89 86.37 79.79 88.38 86.23 80.61
MCLES 49.69 51.84 35.62 78.21 87.84 74.71 95.50 90.61 90.27 85.95 80.47 73.81

MLLTO 93.70 89.87 86.79 95.63 96.75 93.52 99.90 99.73 99.78 96.00 92.04 90.91

Setting the derivative of Eq. (13) with respect to w(v) to zero,
the solution of w(v) is obtained by

w(v)∗ =
(J(v))1/(1−r)∑m
v=1(J

(v))1/(1−r)
. (14)

Update A: All variables except A are fixed, we obtain
the following problem

min
A

m∑
v=1

(w(v))r(‖S(v) −A‖2F ). (15)

Setting the derivative of A in Eq. (15) to zero, we have

A∗ =

∑m
v=1(w

(v))rS(v)∑m
v=1(w

(v))r
. (16)

Update Y ,H, µ and β: The Lagrange multipliers and
penalty parameters are updated by

Y∗ = Y + µ(Z − S − E);H∗ =H+ β(G − S);
µ∗ = min(ω ∗ µ, µmax);β∗ = min(ω ∗ β, βmax).

(17)

The computational complexity of the proposed method
mainly lies in the calculation of G and E . Due to
FFT, inverse FFT and t-SVD operations, updating G takes
O(n2mlog(n) + n2m2). As for E , its computation process
requires O(mn2). In general, the computational complexity
is O(k(n2mlog(n) + n2m2)) and k is the number of itera-
tions. Algorithm 1 summarizes the main steps of the proposed
method MLLTO.

4. EXPERIMENTS

In this section, we perform substantial experiments in
terms of multi-view clustering and semi-supervised classifica-
tion to verify the effectiveness of the proposed MLLTO. Nu-
merous traditional and multi-view approaches are compared
with four universally used multi-view datasets.

4.1. Experimental settings

In our experiments, four benchmark datasets for multi-
view learning are selected to measure the performance of all
compared methods. ALOI1 contains 1,079 images that are di-
vided into 10 classes, and each image has 4 views. COIL-202

is composed of 1,440 images with 20 categories, each sample
is represented as 4 features. HW3 contains 2,000 images of
handwritten numerals from 0 to 9, each image with 6 types of
representations. MSRC-v14 is constituted of a total of 210 im-
ages of 7 objects, each image with 5 feature representations.
For clustering tasks, the proposed method is compared with
following methods: SPCbest [14], LRRbest [15], LTMSC [8],
CSMSC [2], t-SVD-MSC [16], ETLMSC [17], MCLES [3].
It is noted that SPCbest and LRRbest are single-view meth-
ods. We perform these methods on each view and record the
best performance. As to semi-supervised classification tasks,
MLLTO is compared with KNN, AMGL [18], MVAR [5],
MLAN [19], HLR-MVS [20]. To measure the performance
of all methods, we evaluate the results of clustering tasks with
clustering accuracy (ACC), normalized mutual information
(NMI) and adjusted rand index (ARI). Experimental results
of semi-supervised classification tasks are evaluated by clas-
sification accuracy. All experiments are run ten times and we
record the average values of experimental outcomes.

4.2. Performance comparison

MLLTO has two hyperparameters: λ and α. On ALOI, λ
is set as 0.01 for clustering and 0.013 for classification. On
COIL-20, λ is set as 0.05 and 0.058 for classification. On HW,
λ is set as 0.008 for clustering and classification. On MSRC-
v1, λ is tuned as 0.099 for clustering and classification. As
for α, it is always set 1 regardless of the dataset and the task.

Table 1 exhibits the performance of multi-view clustering
tasks. In light of this table, We have the following beneficial

1https://elki-project.github.io/datasets/multi view
2https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
3http://yann.lecun.com/exdb/mnist/
4http://riemenschneider.hayko.at/vision/dataset/task.php?did=35
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Table 2: The performance of compared classification meth-
ods when the ratio of labeled samples is fixed as 10%.

Method ALOI COIL-20 HW MSRC-v1
KNN 45.68 85.79 82.58 52.91

AMGL 82.41 99.52 88.57 85.93
MVAR 72.94 84.2 76.06 54.81
MLAN 87.61 98.06 96.09 82.22

HLR-MVS 89.34 98.25 86.37 79.58
MLLTO 93.85 92.02 96.84 90.05

Table 3: Running time (seconds) of various multi-view clus-
tering methods on all datasets.

Method ALOI COIL-20 HW MSRC-v1
LTMSC 131.55 214.20 2035 8.62
CSMSC 90.50 161.44 482.03 16.06

t-SVD-MSC 55.87 123.58 194.56 3.02
ETLMSC 17.12 87.31 411.02 0.87
MCLES 12180 9791 72555 141.49
MLLTO 24.40 58.23 171.93 0.95

observations. Firstly, all of methods with regard to multi-view
clustering commonly behave favorably in comparison with
single-view methods SPCbest and LRRbest. It follows that
these multi-view methods succeed in learning complementary
information among multiple views and promoting the accu-
racy of clustering. In addition, the proposed MLLTO signif-
icantly outperforms these compared methods by all metrics,
which suggests the effectiveness of the proposed algorithm.
This leading situation is explainable. In brief, MLLTO uti-
lizes the low-rank tensor representation to explore the high-
order correlations compared with CSMSC and MCLES. Dif-
ferent from LTMSC, t-SVD-MSC and ETLMSC, MLLTO
learns the low-rank tensor representation and the final affin-
ity matrix simultaneously, which is beneficial to utilize the
dependence between them. Moreover, MLLTO takes into ac-
count the diversity between different data features and learns
the adaptive weights for all views. Finally, since the tar-
get tensor is constructed by the Gaussian kernel function in-
stead of subspace representation, the efficiency of MLLTO is
promising as revealed in Table 3.

Additionally, we conduct experiments on semi-supervised
classification to further validate the proposed MLLTO. Fig-
ure 1 demonstrates the classification accuracy of all com-
pared methods with different ratios of labeled data ranging in
{0.10, 0.15, · · · , 0.50}. It can be seen that MLLTO achieves
desired experimental results that are comparable or superior
to other compared methods, and behaves satisfactorily with
limited labeled data. Besides, the performance of MLLTO
is relatively stable as the supervision ratio increases. Table
2 presents the classification results when the ratio of labeled
samples is fixed as 10%.

(a) ALOI (b) COIL-20

(c) HW (d) MSRC-v1

Fig. 1: The performance of the proposed method
MLLTO with different ratios of labeled data ranging in
{0.10, 0.15, · · · , 0.50}.

4.3. Convergence Analyses

For the sake of presentation on the feasibility of the pro-
posed MLLTO, we examine the convergence of the model
with all tested datasets in Figure 2. The convergence of
multi-view clustering and semi-supervised classification is
analogous, thereby we only display the curves of loss val-
ues in clustering tasks. The error is defined as error =
max(||Z − Sk+1 − Ek+1||∞ ≤ ε, ||Gk+1 − Sk+1||∞ ≤
ε, ||Ak+1 − Ak||∞ ≤ ε). The experimental results indi-
cate that loss values of MLLTO descent rapidly and converge
within a certain number of iterations finally, which is sugges-
tive of the effectiveness of the proposed algorithm.

5. CONCLUSION

In this paper, we propose a new framework termed as
MLLTO that can be applied to multi-view clustering and
semi-supervised classification at the same time. For the sake
of algorithm efficiency, we construct the similarity tensor
based on the Gaussian kernel function. The t-SVD based ten-
sor nuclear norm is employed to minimize the rank of the tar-
get tensor. The difference between views is considered and an
adaptive weight is learned for each view. Based on the adap-
tive weight learning, the final matrix is acquired via weighted
multi-view fusion. Furthermore, we integrate the fusion pro-
cess and the low-rank tensor learning into a joint procedure.
Experimental results verify the effectiveness of the proposed
MLLTO by clustering and classification accuracy.
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(a) ALOI (b) COIL-20

(c) HW (d) MSRC-v1

Fig. 2: The convergent curves of the proposed method
MLLTO with respect to clustering tasks on all tested datasets.

6. REFERENCES

[1] Rongkai Xia, Yan Pan, Lei Du, and Jian Yin, “Robust
multi-view spectral clustering via low-rank and sparse
decomposition,” in AAAI, 2014, pp. 2149–2155.

[2] Shirui Luo, Changqing Zhang, Wei Zhang, and Xi-
aochun Cao, “Consistent and specific multi-view sub-
space clustering,” in IJCAI, 2018, pp. 3730–3737.

[3] Mansheng Chen, Ling Huang, Changdong Wang, and
Dong Huang, “Multi-view clustering in latent embed-
ding space,” in AAAI, 2020, pp. 3513–3520.

[4] Changqing Zhang, Huazhu Fu, Qinghua Hu, Xiaochun
Cao, Yuan Xie, Dacheng Tao, and Dong Xu, “Gen-
eralized latent multi-view subspace clustering,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 42, no. 1, pp. 86–99, 2020.

[5] Hong Tao, Chenping Hou, Feiping Nie, Jubo Zhu, and
Dongyun Yi, “Scalable multi-view semi-supervised
classification via adaptive regression,” IEEE Transac-
tions on Image Processing, vol. 26, no. 9, pp. 4283–
4296, 2017.

[6] Feiping Nie, Guohao Cai, Jing Li, and Xuelong Li,
“Auto-weighted multi-view learning for image cluster-
ing and semi-supervised classification,” IEEE Trans-
actions on Image Processing, vol. 27, no. 3, pp. 1501–
1511, 2018.

[7] Shiping Wang, Zhewen Wang, and Wenzhong Guo,
“Accelerated manifold embedding for multi-view semi-
supervised classification,” Information Sciences, 2021.

[8] Changqing Zhang, Huazhu Fu, Si Liu, Guangcan Liu,
and Xiaochun Cao, “Low-rank tensor constrained mul-
tiview subspace clustering,” in ICCV, 2015, pp. 1582–
1590.

[9] Zhan Wang, Lizhi Wang, and Hua Huang, “Structure
preserving multi-view dimensionality reduction,” in
ICME, 2020, pp. 1–6.

[10] Xiaoli Sun, Youjuan Wang, and Xiujun Zhang, “Multi-
view subspace clustering via non-convex tensor rank
minimization,” in ICME, 2020, pp. 1–6.

[11] Misha E Kilmer, Karen Braman, Ning Hao, and
Randy C Hoover, “Third-order tensors as operators on
matrices: A theoretical and computational framework
with applications in imaging,” SIAM Journal on Matrix
Analysis and Applications, vol. 34, no. 1, pp. 148–172,
2013.

[12] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun,
Yong Yu, and Yi Ma, “Robust recovery of subspace
structures by low-rank representation,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol.
35, no. 1, pp. 171–184, 2012.

[13] Wenrui Hu, Dacheng Tao, Wensheng Zhang, Yuan Xie,
and Yehui Yang, “The twist tensor nuclear norm for
video completion,” IEEE Tansactions on Neural Net-
works and Learning Systems, vol. 28, no. 12, pp. 2961–
2973, 2016.

[14] Andrew Y Ng, Michael I Jordan, and Yair Weiss, “On
spectral clustering: Analysis and an algorithm,” in
NIPS, 2001, pp. 849–856.

[15] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun,
Yong Yu, and Yi Ma, “Robust recovery of subspace
structures by low-rank representation,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol.
35, no. 1, pp. 171–184, 2013.

[16] Yuan Xie, Dacheng Tao, Wensheng Zhang, Yan Liu, Lei
Zhang, and Yanyun Qu, “On unifying multi-view self-
representations for clustering by tensor multi-rank min-
imization,” International Journal of Computer Vision,
vol. 126, no. 11, pp. 1157–1179, 2018.

[17] Jianlong Wu, Zhouchen Lin, and Hongbin Zha, “Essen-
tial tensor learning for multi-view spectral clustering,”
IEEE Transactions on Image Processing, vol. 28, no.
12, pp. 5910–5922, 2019.

[18] Feiping Nie, Jing Li, and Xuelong Li, “Parameter-free
auto-weighted multiple graph learning: A framework
for multiview clustering and semi-supervised classifica-
tion,” in IJCAI, 2016, pp. 1881–1887.

[19] Feiping Nie, Guohao Cai, and Xuelong Li, “Multi-view
clustering and semi-supervised classification with adap-
tive neighbours,” in AAAI, 2017, pp. 2408–2414.

[20] Yuan Xie, Wensheng Zhang, Yanyun Qu, Longquan
Dai, and Dacheng Tao, “Hyper-laplacian regularized
multilinear multiview self-representations for clustering
and semisupervised learning,” IEEE Transactions on
Cybernetics, vol. 50, no. 2, pp. 572–586, 2020.

6

Authorized licensed use limited to: Fuzhou University. Downloaded on May 17,2022 at 05:39:10 UTC from IEEE Xplore.  Restrictions apply. 


		2021-05-13T04:30:47-0400
	Preflight Ticket Signature




