
Expert Systems With Applications 168 (2021) 114436

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Kernel meets recommender systems: A multi-kernel interpolation for matrix
completion
Zhaoliang Chen a,b, Wei Zhao c, Shiping Wang a,b,∗

a College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China
b Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou 350116, China
c Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong SAR, China

A R T I C L E I N F O

Keywords:
Recommender systems
Kernel learning
Multi-kernel learning
Matrix completion
Matrix interpolation

A B S T R A C T

A primary research direction for recommender systems is matrix completion, which attempts to recover the
missing values in a user–item rating matrix. There are numerous approaches for rating tasks, which are mainly
classified into latent factor models and neighborhood-based models. Most neighborhood-based models seek
similar neighbors by computing similarities in the original data space for final predictions. In this paper, we
propose a new neighborhood-based interpolation model with a kernelized matrix completion framework, with
the impact weights provided by neighbors computed in a new Hilbert space containing more features. In our
model, the kernel function is combined with a similarity measurement to achieve better approximation for
unknown ratings. Furthermore, we extend our model with a non-linear multi-kernel framework which learns
weights automatically to improve the model. Finally, we conduct extensive experiments on several real-world
datasets. The outcomes show that the proposed methods work effectively and improve the performance of the
rating prediction task compared to both the traditional and state-of-the-art approaches.
1. Introduction

Recommender systems are widely employed in various spheres and
have become a popular research topic in decades (Hwang et al., 2016;
Qian et al., 2019; Wang, Zhou and Lu, 2019). For instance, the famous
media-service provider Netflix held the Netflix Prize competition to
explore algorithms to predict user ratings of movies. This task is also
considered as matrix completion issue that retrieves missing ratings
in a rating matrix. Table 1 provides a simple example of the user–
item rating matrix waiting to be completed. Most of the ratings in this
table are missing. In real-world datasets, the rating matrices are even
more sparse, which leads to the cold-start problem in recommender
systems. The primary target of matrix completion is to retrieve the
missing ratings in the user–item rating matrix. A classical solution for
matrix completion is nonnegative matrix factorization (NMF) (Lee &
Seung, 1999), which factorizes the incomplete matrix into two low-
rank matrices. A variety of methods have been proposed for matrix
completion. Kang et al. (2016) completed the rating matrix based
on low-rank assumption, which adopted a nonconvex rank relaxation
to achieve a better rank approximation. Xue et al. (2017) leveraged
two parallel deep neural networks to factorize a user–item interaction
matrix and predict the unknown ratings. Inspired by word embedding
models, Liang et al. (2016) jointly factorized the user–item interaction

∗ Corresponding author at: College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China.

matrix and the item–item co-occurrence matrix with shared item latent
factors.

Collaborative filtering (CF) has been widely investigated by many
researchers and is a mature application that has been utilized exten-
sively in industry (Chen et al., 2017, 2019; Wang, Zhou, Chen et al.,
2019). The algorithm attempts to determine the hidden relationships
between users and items in a data-driven method and recommends
similar items to users with the same interests. There are two pri-
mary types of CF, latent factor models (LFMs) and neighborhood-based
models (NBMs). LFMs discover the latent features of users or items
and project them into feature vectors that are generally of low-rank.
Matrix factorization (MF) is a typical method of LFMs, which factorizes
the raw rating matrix into two low-rank matrices known as the user
latent matrix and the item latent matrix. The unknown ratings are
predicted by the dot product of the corresponding latent vectors. A
large number of MF-based models have been proposed in decades.
For example, Koren (2008) applied a singular value decomposition
(SVD) based model named SVD++ that considered the influence of the
neighborhood. Ning and Karypis (2011) presented a sparse linear model
(SLIM) that explored an item–item similarity matrix by factorizing the
original user–item interaction matrix. Wang et al. (2018) employed
vailable online 3 December 2020
957-4174/© 2020 Elsevier Ltd. All rights reserved.

E-mail addresses: chenzl23@outlook.com (Z. Chen), wzhao22@cityu.edu.hk (W

https://doi.org/10.1016/j.eswa.2020.114436
Received 14 December 2019; Received in revised form 9 August 2020; Accepted 1
. Zhao), shipingwang@fzu.edu.cn (S. Wang).

December 2020

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:chenzl23@outlook.com
mailto:wzhao22@cityu.edu.hk
mailto:shipingwang@fzu.edu.cn
https://doi.org/10.1016/j.eswa.2020.114436
https://doi.org/10.1016/j.eswa.2020.114436
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2020.114436&domain=pdf

Expert Systems With Applications 168 (2021) 114436Z. Chen et al.

i
d
A
b

Table 1
Simple example of a rating matrix for completion.

𝐼1 𝐼2 𝐼3 𝐼4 𝐼5
𝑈1 3 2
𝑈2 1 4 3 3
𝑈3 1
𝑈4 5 2

Fig. 1. Basic concept of NBMs. Different data points contribute together to the
prediction point based on weights. The points inside the circle are neighbors of the
predicting point, whose influence is computed by the similarity measures. Closer points
have greater impact on prediction.

a confidence-aware MF framework to optimize both the precision of
rating estimation and prediction confidence.

Different from LFMs, NBMs aim to explore similar users or items
by computing the similarities among them and make estimations by
considering the influence or contribution of each neighbor. A classic
algorithm of NBMs is the 𝑘-nearest neighbors (KNN) approach (Sarwar
et al., 2001). The item-based KNN models calculate the similarities
among items and then sort them for top-𝑘 recommendations. For ex-
ample, Park et al. (2015) proposed a KNN-based CF model named
reversed CF, which utilized a KNN graph to locate the KNN of the rated
items. As for rating tasks, models commonly compute the unknown
ratings with a weighted average of other existing ratings. Different
neighbors contribute to the final estimations of target ratings based
on the similarities between them. Fig. 1 illustrates this schema. By
measuring the similarities or distance between the predicting point
and existing points, we can select the most relative points to estimate
the value of unknown point. Accordingly, a smaller interval between
data points should lead to stronger influence, which means that similar
points work better on the recovery of unknown data.

Kernel learning is a technique that applies kernel functions to map
the raw data into a high-dimensional space without computing the
corresponding projection functions. It is best known in support vector
machines (SVMs), which make raw linearly inseparable data separable
in a high-dimensional space. Among various kernel functions, radial
basis function (RBF) kernels such as the Gaussian kernel are the most
widely used, which are often leveraged to train RBF networks. RBF
kernels have been extensively applied in recommender systems and
improve the performance of MF-based approaches (Liu et al., 2016; Pal
& Jenamani, 2018; Zhou et al., 2012). Because RBF kernels are able
to calculate the similarities among samples, and the performance of
NBMs is closely related to the similarity metric, we also consider it as
a powerful technique for improving NBMs. Actually, RBF kernels have
been applied in many fields like feature selection (Kuo et al., 2013),
clustering (Cruz et al., 2016) and image processing (Romani et al.,
2019) due to the ability to measure similarities. Nevertheless, to our
2

m

knowledge, limited studies have been devoted to the application of RBF
kernels in NBMs for recommender system databases.

In this paper, we propose a new kernel-based matrix completion
(KMC) framework for recommender systems, which aims to solve the
rating tasks with NBMs for a user–item interaction matrix. The model
applies RBF kernels that are reformulated by similarity measures and
provides estimation for a user on a specific item. Inspired by the
interpolation condition, the proposed KMC is a closed-form solution
calculated by kernel matrices. This speeds up the rating predictions
for a specific user or item. Moreover, we improve this model with a
multi-kernel framework for KMC (M-KMC) to merge different features
in different latent spaces generated by diverse kernels. Different from
extensively used linear combination of kernels, M-KMC applied a non-
linear auto-weighted strategy to merge different kernels. In summary,
our contributions are as follows:

1. We propose a kernelized model with a closed-form solution for
matrix completion, which applies the interpolation method for
rating prediction.

2. In our proposed model, the similarity metric is combined with
the Gaussian kernel to compute the weights of neighbors, which
generates a more precise approximation for unknown ratings.

3. M-KMC is presented with the multi-kernel framework, which
adaptively adjusts the weights of the multiple kernel functions
and improves the performance of KMC.

4. We conduct rich experiments on KMC and M-KMC and discuss
the effect of different parameters. Our model achieves the per-
formance that is competitive with or superior to the traditional
and state-of-the-art models.

2. Related work

2.1. Neighborhood-based models

NBMs are commonly used techniques in recommender systems.
These models compute the similarities or correlations among different
users or items, based on rating records or extracted latent features. A
common metric is known as the cosine similarity, which calculates the
cosine value between two vectors. For a user-based similarity measure,
assume that 𝐼𝑢𝑣 = {1,… , 𝑛} is the item set that both user 𝑢 and
user 𝑣 have co-rated, then vector 𝑌𝑢 = {𝑦𝑢1,… , 𝑦𝑢𝑛} and vector 𝑌𝑣 =
{𝑦𝑣1,… , 𝑦𝑣𝑛} are the rating vectors of user 𝑢 and 𝑣. The cosine similarity
𝑐𝑜𝑠(𝑢, 𝑣) is computed by

𝑐𝑜𝑠(𝑢, 𝑣) =
𝑌𝑢 ⋅ 𝑌𝑣

‖

‖

𝑌𝑢‖‖ ‖‖𝑌𝑣‖‖
=

∑

𝑖∈𝐼𝑢𝑣 𝑦𝑢𝑖𝑦𝑣𝑖
√

∑

𝑖∈𝐼𝑢𝑣 𝑦
2
𝑢𝑖

√

∑

𝑖∈𝐼𝑢𝑣 𝑦
2
𝑣𝑖

. (1)

The scale of the cosine similarity is [0, 1], and a higher cosine value
corresponds to a higher correlation. However, for the reason that
different users may have their own rating scales, such computations
may be inaccurate. To handle this problem, a solution is considering the
deviation from the average value, which is known as decentralization.
Then Eq. (1) becomes

𝑝𝑒𝑎𝑟𝑠𝑜𝑛(𝑢, 𝑣) =

∑

𝑖∈𝐼𝑢𝑣 (𝑦𝑢𝑖 − 𝑦̄𝑢)(𝑦𝑣𝑖 − 𝑦̄𝑣)
√

∑

𝑖∈𝐼𝑢𝑣 (𝑦𝑢𝑖 − 𝑦̄𝑢)2
√

∑

𝑖∈𝐼𝑢𝑣 (𝑦𝑣𝑖 − 𝑦̄𝑣)2
, (2)

where 𝑦̄𝑢 and 𝑦̄𝑣 are the averages of user ratings on co-rated item set
𝐼𝑢𝑣. Eq. (1) is also called Pearson correlation coefficient. This decentral-
zation process also considers the various rating scales of users, because
ifferent users may rate items with the same interests differently.
s a result, the distance between individuals with the same interests
ut rating differently is closer, so that a more precise correlation is
easured.

Expert Systems With Applications 168 (2021) 114436Z. Chen et al.

h
k
t

d
d
i
d
[

T
a

3

u
t
r
c
t
(

𝑠

H

w
a
O
d
n
b

Similar to the cosine similarity metric, the mean square difference
(MSD) considers the square differences between user 𝑢 and user 𝑣 with
the co-rated item set 𝐼𝑢𝑣, which is defined by

𝑀𝑆𝐷(𝑢, 𝑣) = 1
|𝐼𝑢𝑣|

⋅
∑

𝑖∈𝐼𝑢𝑣

(𝑦𝑢𝑖 − 𝑦𝑣𝑖)2. (3)

The similarity measures for items are analogous to those for users.
Contrary to cosine similarity, a higher MSD value corresponds to a
lower similarity. Thus there is a variation version of MSD to compute
similarity 𝑠𝑖𝑗 so that it is analogous to other similarity metrics, as Eq. (4)
shows:

𝑠𝑢𝑣 = 1
𝑀𝑆𝐷(𝑢, 𝑣) + 1

. (4)

In the following sections, we adopt MSD to measure the similarities
among different users and items.

2.2. Kernel learning

Kernel learning is a useful technique in machine learning because
it can project non-linear divided data in low-dimensional space to
high-dimensional space where they can be linearly separated. It is
extensively applied in SVMs to transform the non-linear problem into
a linear one. Assume that 𝐻 is a Hilbert space defined on 𝛺 ∈ R𝑑 with
inner product operation (⋅, ⋅)𝐻 , we have equivalent computation

𝐾(𝑥, 𝑥′) = (𝜑(𝑥), 𝜑(𝑥′))𝐻 (5)

for a given kernel function 𝐾(⋅, ⋅), where operation 𝜑(⋅) ∈ 𝐻 is the
projection to Hilbert space for a single variable. The formula demon-
strates that the product operation in Hilbert space is equivalent to
the function 𝐾(𝑥, 𝑥′) in low-dimensional space without defining the
mapping operation 𝜑(⋅). There are many kernel functions, including
linear, polynomial and RBF kernels. Among these, RBF kernels are
extensively used because of their capacity to map the original data in
space with an infinite number of dimensions. The Gaussian kernel is a
representative RBF kernel, formulated as

𝐾(𝑥, 𝑥′) = 𝑒−
‖𝑥−𝑥′‖2

2𝜎2 , (6)

where symbol 𝜎 is a bandwidth parameter that controls the spread
of the Gaussian kernel. A large value of 𝜎 indicates that the kernel
as a wide spread, whereas a small 𝜎 causes a narrow spread of the
ernel function. Term ‖𝑥 − 𝑥′‖ is the Euclidean distance between the
wo variables. If set 𝑐 = 1

√

2𝜎
, Eq. (6) is simplified to

𝐾(𝑥, 𝑥′) = 𝐾(‖𝑥 − 𝑥′‖) = 𝑒−(𝑐‖𝑥−𝑥
′
‖)2 . (7)

Because the value of the Gaussian kernel function ranges from zero to
one (when 𝑥 = 𝑥′), and decreases as the distance between 𝑥 and 𝑥′

increases, it is regarded as a similarity metric.
Different kernels generate different feature spaces and, even the

same kernel with different parameters forms multiple spaces. This
inspires us to apply the multi-kernel learning (MKL) framework in
our model to merge different feature spaces. The fundamental linear
combination of 𝑞 different kernels is

𝐾 ′(𝑥, 𝑥′) =
𝑞
∑

𝑡=1
𝛼𝑡𝐾𝑡(𝑥, 𝑥′),

𝑠.𝑡.
𝑞
∑

𝑡=1
𝛼𝑡 = 1, 𝛼𝑡 ⩾ 0,

(8)

where 𝐾𝑡(⋅, ⋅) is the 𝑡th kernel function and 𝛼𝑡 is the weight of the 𝑡th
kernel.

Many studies have solved matrix completion problems with a ker-
nelized framework in recent years. Lee et al. (2013) applied smooth
3

kernel functions as a non-negative symmetric unimodal function in
their local low-rank matrix approximation (LLORMA) model for rec-
ommender systems. Liu et al. (2016) proposed kernelized matrix fac-
torization for recommender systems, and applied multi-kernel frame-
work which considered linear combination of different kernel spaces
to improve the performance. Li et al. (2019) presented a deep matrix
completion (DMC) with adversarial kernel embedding to conduct a
matrix completion in Hilbert space for recommender systems. Chen
and Li (2019) investigated memory-efficient kernel PCA to solve low-
rank approximation and clustering problems. The kernel trick is also
applied to solve high-rank matrix completion problems in terms of
various applications including subspace clustering (Fan & Chow, 2018;
Fan et al., 2020). However, most of these methods directly applied
original kernel functions in their works. In this paper, we consider
reformulating the widely used RBF kernel function with similarity met-
ric, to learn a better representation for recommender system in Hilbert
space. Moreover, instead of the commonly applied linear combination
of kernel functions, a non-linear MKL framework is proposed which
learns weights automatically.

3. Our proposed models

Before the description of our proposed methods, we first provide
explanations for primary mathematical notations used in this section.
The set R𝑚×𝑛 is the space of 𝑚×𝑛 dimensional real matrix. Assume there
are 𝑚 users and 𝑛 items in the dataset, all observed user–item rating
pairs are stored in set 𝛺 = {(𝑢, 𝑖)|𝑦𝑢𝑖 𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑}, and set 𝛺̄ represents
the pairs where ratings are missing. Then

𝑌𝑢𝑖 =
{

𝑦𝑢𝑖 (𝑢, 𝑖) ∈ 𝛺
𝑛𝑢𝑙𝑙 (𝑢, 𝑖) ∈ 𝛺̄.

(9)

enotes the user–item interaction matrix. The similarity between two
ata points is measured by 𝑠. Functions 𝑝(𝑥𝑘) and 𝑓 (𝑥𝑘) denote the
nterpolation value and real value of point 𝑥𝑘, respectively. As we have
iscussed before, 𝐾(𝑥, 𝑥′) represents the kernel function. Therefore K =
𝐾(𝑥𝑖, 𝑥𝑗)]𝐿𝑖,𝑗=1 ∈ R𝐿×𝐿 denotes the kernel matrix where K𝑖𝑗 = 𝐾(𝑥𝑖, 𝑥𝑗).
he neighborhood weight vector for recovering 𝑥𝑘 is denoted by 𝜉(𝑥𝑘),
nd the weights for multi-kernel learning are measured by {𝛼𝑡}

𝑞
𝑡=1.

.1. Similarity metric and neighbor selection

In the field of image interpolation and image super-resolution, we
sually sample the pixel from the pixels surrounding it. However, for
he recommender systems, there are no spatial relationships for the
ating matrix. Therefore, we have to select several neighbors for a
ertain data point 𝑥 = (𝑢, 𝑖) ∈ 𝛺 by computing the similarities between
hem. First, we define the similarity 𝑠𝑥𝑥′ between 𝑥 = (𝑢, 𝑖) and 𝑥′ =
𝑣, 𝑗) with the squared Euclidean distance:

𝑥𝑥′ =
√

𝑠2𝑢𝑣 + 𝑠2𝑖𝑗 . (10)

ere we adopt the MSD defined in Eq. (4) to compute 𝑠𝑢𝑣 and 𝑠𝑖𝑗 .
Because similarity metrics are inaccurate when co-rated sets are small,
we include a penalty term 𝛿 to reduce the magnitude of these similarity
weights. The adjusted similarity metric is

𝑠′𝑢𝑣 =
𝑚𝑖𝑛{|𝐼𝑢𝑣|, 𝛿}

𝛿
𝑠𝑢𝑣, (11)

here the influence of 𝛿 decreases as the size of the set 𝐼𝑢𝑣 increases,
nd disappears when the size of the set 𝐼 is large enough (|𝐼𝑢𝑣| ⩾ 𝛿).
nly when there are enough users who have both rated two items
o the punishment disappears. Finally, we obtain the similarity of
eighbor point 𝑥′ by considering the punishment in Eq. (11), as defined
y 𝑠𝑥𝑥′ =

√

𝑠′2𝑢𝑣 + 𝑠′2𝑖𝑗 .
To select suitable neighbors for interpolations, we sorted the known

data points in descending order from the candidate points. To decrease
the number of alternative points and the cost of computations, we
preferentially consider the points in the same row or column as being

Expert Systems With Applications 168 (2021) 114436Z. Chen et al.

w
s
t
i
k
A
c
o
i

w
m
o
t
(
s

w
∑

e
W
m
l

b

the estimation point, that is, only the ratings rated by the same users
or on the same items are preferentially considered and added to the
candidate points. If there are not enough neighbors, we randomly
sample the data points and place them in candidate points to guarantee
the ratings are predicted by enough neighbors.

3.2. Local kernel-based approximation

To apply the kernel trick in the matrix approximation, we project
the original data into the Hilbert space and compute the weighted
contributions of neighbors. This concept has been proposed in many
other fields. For example, in network science, Martinčić-Ipšić et al.
(2017) employed weighted similarity metrics for link prediction on
Twitter. Yuan et al. (2019) also presented a graph kernel based link
prediction method by measuring user similarity. Assume that there
is a set of neighbors {𝑥𝑡, 𝑓 (𝑥𝑡)}𝐿𝑡=1, we apply a data-dependent linear
function to represent each data 𝑥𝑘, as the following equation shows:

𝑝(𝑥𝑘) =
𝐿
∑

𝑡=1
𝜆𝑡𝐾(𝑥𝑘, 𝑥𝑡)

= [𝐾(𝑥𝑘, 𝑥1)⋯𝐾(𝑥𝑘, 𝑥𝐿)][𝜆1 ⋯ 𝜆𝐿]𝑇 ,

(12)

where 𝜆𝑡 is the weight of the 𝑡th neighbor. Because there are no spatial
relations inside the rating matrix, the RBF kernel 𝐾(𝑥, 𝑥′) is computed
with similarities defined in Eq. (10), instead of with the Euclidean
distance. Then the Gaussian kernel function applied in our framework
is defined by

𝐾(𝑥, 𝑥′) = 𝐾(𝑠𝑥𝑥′) = 𝑒−(𝑐𝑠𝑥𝑥′)
2
. (13)

According to the interpolation condition, for all known data points,
the value of interpolation and the real value should be equal, that is,

𝑝(𝑥𝑘) = 𝑓 (𝑥𝑘), 𝑥𝑘 ∈ 𝛺. (14)

Therefore, considering both Eqs. (12) and (14), we have

𝑓 (𝑥𝑘) = [𝐾(𝑥𝑘, 𝑥1)⋯𝐾(𝑥𝑘, 𝑥𝐿)][𝜆1 ⋯ 𝜆𝐿]𝑇 . (15)

For all 𝐿 known neighbors 𝑥1,… , 𝑥𝐿, then we compute the weight
vector 𝝀 = [𝜆1 ⋯ 𝜆𝐿]𝑇 with closed-form solution, as shown below:

𝝀 =
⎡

⎢

⎢

⎣

𝐾(𝑥1, 𝑥1) ⋯ 𝐾(𝑥1, 𝑥𝐿)
⋮ ⋱ ⋮

𝐾(𝑥𝐿, 𝑥1) ⋯ 𝐾(𝑥𝐿, 𝑥𝐿)

⎤

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎣

𝑓 (𝑥1)
⋮

𝑓 (𝑥𝐿)

⎤

⎥

⎥

⎦

= [𝐾(𝑥𝑖, 𝑥𝑗)]𝐿𝑖,𝑗=1
−1𝐹 (𝑥𝑘),

(16)

where 𝐹 (𝑥𝑘) = [𝑓 (𝑥1),… , 𝑓 (𝑥𝐿)]𝑇 is the vector of the groundtruth of
𝐿 neighbors. After obtaining 𝝀, the unknown ratings are computed by
substituting Eq. (16) into Eq. (12), as written in Eq. (17):

𝑝(𝑥𝑘) = [𝐾(𝑥𝑘, 𝑥𝑖)]𝐿𝑖=1[𝐾(𝑥𝑖, 𝑥𝑗)]𝐿𝑖,𝑗=1
−1𝐹 (𝑥𝑘), (17)

where term [𝐾(𝑥𝑘, 𝑥𝑖)]𝐿𝑖=1[𝐾(𝑥𝑖, 𝑥𝑗)]𝐿𝑖,𝑗=1
−1 is the final interpolation

weight vector for 𝑥𝑘. Let 𝜉(𝑥𝑘) = [𝐾(𝑥𝑘, 𝑥𝑖)]𝐿𝑖=1[𝐾(𝑥𝑖, 𝑥𝑗)]𝐿𝑖,𝑗=1
−1 denote

the function that calculates the final contribution of 𝐿 neighbors on
unknown point 𝑥𝑘, the localized estimation for the unknown rating is
computed by

𝑝(𝑥𝑘) = 𝜉(𝑥𝑘)𝐹 (𝑥𝑘). (18)

The outputs of the model are only computed by the nearest neighbors.
Algorithm 1 describes the steps for rating interpolations on an unrated
data point 𝑥𝑘. Similarity matrices 𝑆𝑈 ∈ R𝑚×𝑚 and 𝑆𝐼 ∈ R𝑛×𝑛 are
calculated in advance for subsequent computations including neighbor
selection and kernel matrix generation procedures.

Fig. 2 briefly illustrates the process of our KMC model. The pro-
posed KMC first searches for neighbors according to the pre-calculated
similarity matrices, and then computes the vector 𝜉(𝑥𝑘) and 𝐹 (𝑥𝑘)
4

for specific 𝑥𝑘 with selected neighbors. Finally the recovery of the
Algorithm 1 Interpolation Algorithm for KMC
Input:

𝑌 ∈ R𝑚×𝑛: original rating matrix,
𝐿: number of neighbors,
𝑥𝑘 = (𝑢, 𝑖): predicting data point.

Output:
𝑝(𝑥𝑘): prediction for data point 𝑥𝑘 = (𝑢, 𝑖).

1: Generate similarity matrices 𝑆𝑈 and 𝑆𝐼 .
2: Find out 𝐿 neighbors of data point 𝑥𝑘.
3: Generate vector of neighborhood real ratings 𝐹 (𝑥𝑘).
4: Compute kernel matrices [𝐾(𝑥𝑘, 𝑥𝑖)]𝐿𝑖=1 and [𝐾(𝑥𝑖, 𝑥𝑗)]𝐿𝑖,𝑗=1.

5: Compute 𝜉(𝑥𝑘) = [𝐾(𝑥𝑘, 𝑥𝑖)]𝐿𝑖=1[𝐾(𝑥𝑖, 𝑥𝑗)]𝐿𝑖,𝑗=1
−1.

6: Compute 𝑝(𝑥𝑘) using Eq. (18).
7: return 𝑝(𝑥𝑘).

unknown data point is measured by Eq. (18). The steps of the algo-
rithm correspond to closed-form solution, without training any extra
parameters. The primary time consuming components of the algorithm
are the steps to compute the similarity matrices, finding neighbors
and calculating kernel matrices. For similarity computations, the time
consumption is related to the number of users and items. With 𝑚
users and 𝑛 items, the time complexity is 𝑂(𝑚𝑎𝑥(𝑚2𝑛, 𝑛2𝑚)), and the
memory complexity is 𝑂(𝑚𝑎𝑥(𝑚2, 𝑛2)). Because the number of neighbors
is usually small, localized computation for 𝐿 neighbors is effective, and
the time complexity for kernel generation is 𝑂(𝐿2). As the computation
for 𝜉(𝑥𝑘) contains inverse computation, the model only works when
the kernel matrix [𝐾(𝑥𝑖, 𝑥𝑗)]𝐿𝑖,𝑗=1 is invertible. Later we will discuss the
influence of this problem through experiments.

3.3. Multi-kernel framework

In this subsection, we improve our framework by computing 𝜉(𝑥)
ith multiple kernels, which is named M-KMC. Fig. 3 illustrates the

tructure of M-KMC. It can be seen from the figure that M-KMC requires
he same neighbor selection procedures as that of KMC. However,
t adds a new step to calculate more kernel matrices with multiple
ernel functions, and then merges them with a non-linear combination.
ssociated with combined kernel spaces, the new weight vector 𝜉(𝑥𝑘)
an be computed. Finally, the ratings are predicted by the dot product
f neighborhood weight vector 𝜉(𝑥𝑘) and known rating vector 𝐹 (𝑥𝑘) as
n KMC.

The linear multi-kernel framework defined in Eq. (8) considers the
eighted average of different kernels. However, this linear combination
ay result in the phenomenon that only one kernel is selected when

ne 𝛼𝑡 = 1 and 𝛼𝑡 = 0 otherwise. In this paper, we use a trick to improve
his framework based on the methodology described by Wang et al.
2007). The M-KMC introduces a new parameter 𝑟 and let 𝑟 ⩾ 1, as
hown below:

𝐾 ′(𝑥, 𝑥′) =
𝑞
∑

𝑡=1
𝛼𝑟𝑡𝐾𝑡(𝑥, 𝑥′)

𝑠.𝑡.
𝑞
∑

𝑡=1
𝛼𝑡 = 1, 𝛼𝑡 ⩾ 0,

(19)

here ∑𝑞
𝑡=1 𝛼

𝑟
𝑡 reaches its minimum when 𝛼𝑡 = 1∕𝑞 with the constraint

𝑞
𝑡=1 𝛼𝑡 = 1. This potentially makes 𝛼𝑡 similar to each other so that

ach kernel contributes to the final model instead of only one working.
hen 𝑟 = 1, the formula is equivalent to the linear combination of
ultiple kernel functions. To simplify the constraints in Eq. (19), we

et 𝛼𝑡 =
|𝑤𝑡|

∑𝑞
𝑖=1 |𝑤𝑖|

to ensure that the sum of 𝛼𝑡 equals 1, where 𝑤𝑖 is the

weight of the 𝑖𝑡ℎ kernel. With aforementioned analysis, we compute 𝜉(𝑥)
y

𝜉(𝑥𝑘) =
𝑞
∑

𝛼𝑟𝑡 [𝐾𝑡(𝑥𝑘, 𝑥𝑖)]𝐿𝑖=1(
𝑞
∑

𝛼𝑟𝑡 [𝐾𝑡(𝑥𝑖, 𝑥𝑗)]𝐿𝑖,𝑗=1)
−1. (20)
𝑡=1 𝑡=1

Expert Systems With Applications 168 (2021) 114436Z. Chen et al.
Fig. 2. Structure of the proposed KMC. Different neighbors of rating records contribute to the estimation in the Hilbert space mapped by kernel function 𝐾(𝑥, 𝑥′).
Fig. 3. The framework of proposed M-KMC. All 𝑞 kernel functions firstly project the original data of neighbors into Hilbert spaces, and then the model combines these spaces to
compute the final estimation.
1
1
1
1
1
1
1
1
1
1

Then the final estimations are obtained by Eq. (18). The value of 𝛼𝑡 is
learned by optimizing the loss function  defined as

 =
|𝛺|

∑

𝑘=1

‖

‖

𝑓 (𝑥𝑘) − 𝜉(𝑥𝑘)𝐹 (𝑥𝑘)‖‖
2
2 − 𝛾(

𝑞
∑

𝑡=1
𝛼𝑡), (21)

where 𝛾 is a coefficient that controls the degree of regularization. In our
experiments, we adopt stochastic gradient descent (SGD) to minimize
the loss function and update 𝛼𝑡.

Algorithm 2 shows the details of the training procedure for M-
KMC. Similar to KMC, M-KMC undertakes processes of similarity matrix
computation, neighbor selection and kernel generation. However, it
calculates multiple kernel matrices with different kernels, and attempts
to learn the weights {𝛼𝑡}

𝑞
𝑡=1 during the training iterations. The time and

memory complexity for similarity computation is the same as that for
KMC. Because we need to generate 𝑞 different spaces, the time and
memory complexity for kernel generation is 𝑂(𝑞𝐿2).

4. Experiments and analysis

In this section, we conduct several experiments for our proposed
KMC and M-KMC on real-world datasets from different recommenda-
tion environments. The performances of different parameter settings
are compared to analyze the parameter sensitivity. Finally, we compare
our proposed models with both the traditional and state-of-the-art
methods via the same metrics to prove the feasibility of our models.

4.1. Descriptions of datasets

In our experiments, we adopt seven different real-world datasets
that are widely used in recommender systems for various fields, includ-
ing movie, book, music and joke recommendations. The details of these
datasets are outlined below.

Filmtrust1 is a small recommender dataset for movie recommenda-
tions that was crawled from the Filmtrust website in 2011. The dataset
includes 35,497 rating records over 1,508 users and 2,071 items.

1 https://www.librec.net/datasets.html.
5

Algorithm 2 Training Algorithm for M-KMC
Input:

𝑌 ∈ R𝑚×𝑛: original rating matrix,
𝑚𝑎𝑥𝐼𝑡𝑒𝑟: training iterations,
𝐿, 𝑞, 𝑟: number of neighbors, number of kernel space number and
parameter for multi-kernel framework.

Output:
𝛼1,⋯ , 𝛼𝑞 : weights for multiple kernels.

1: Initialize weights 𝛼1,⋯ , 𝛼𝑞 with 1
𝑞 .

2: Generate similarity matrices 𝑆𝑈 and 𝑆𝐼 .
3: for all 𝑥𝑘 ∈ 𝛺̄ do
4: Find out 𝐿 neighbors of data point 𝑥𝑘.
5: Generate vector of neighborhood real ratings 𝐹 (𝑥𝑘).
6: for 𝑡 = 1 → 𝑞 do
7: Compute kernel matrices [𝐾𝑡(𝑥𝑘, 𝑥𝑖)]𝐿𝑖=1 and [𝐾𝑡(𝑥𝑖, 𝑥𝑗)]𝐿𝑖,𝑗=1.
8: end for
9: end for
0: 𝑖𝑡𝑒𝑟 ← 0.
1: while 𝑖𝑡𝑒𝑟 < 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 or loss decreases do
2: for all 𝑥𝑘 ∈ 𝛺̄ do
3: Compute 𝜉(𝑥𝑘) using Eq. (20).
4: Compute 𝑝(𝑥𝑘) using Eq. (18).
5: Update 𝛼𝑡 using SGD method.
6: end for
7: 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1.
8: end while
9: return 𝛼1,⋯ , 𝛼𝑞 .

Epinions2 is a dataset for product recommendations with a 5-star
rating system. In our experiments, we extracted all ratings from the first
4,000 users and 12,000 items.

2
 http://www.trustlet.org/wiki/Epinions_dataset.

https://www.librec.net/datasets.html
http://www.trustlet.org/wiki/Epinions_dataset

Expert Systems With Applications 168 (2021) 114436Z. Chen et al.

w
u

t
f
f

i
m

i
r
o

4

m
w
t
M

a

i
l
p
r

Table 2
Statistics of the real-world datasets in our experiments.

Filmtrust Epinions Amusic Jester Ciao BookCrossing ML-1M

Type of items Movies Products Music Jokes Videos Books Movies
Number of users 1,508 4,000 5,249 15,000 17,615 20,000 6,040
Number of items 2,071 12,000 4,874 150 16,121 15,000 3,952
Number of ratings 35,497 81,513 53,316 390,772 72,665 44,648 1,000,201
Rating scale [0.5, 4.0] [1.0, 5.0] [1.0, 5.0] [−10.0, 10.0] [1.0, 5.0] [1.0, 10.0] [1.0, 5.0]
Data density 0.01137 0.00170 0.00208 0.17368 0.00025 0.00002 0.04190
t
t
n
i
t
p
r

b
e
r
d
t
2
b
p
r
i
e
r
t

f

Amazon music (Amusic)3 is a music recommendation dataset col-
lected from the Amazon website, which is also a database with 5-star
rating records. We use first 5,294 users and 4,874 items for our experi-
ments. All users have rated at least 30 items and all items are rated by
at least 60 users.

Jester4 is a benchmark dataset for joke recommender systems which
contains substantial ratings provided by users. The rating scale ranges
from −10.0 to 10.0.

Ciao1 dataset was crawled from the ratings of DVDs on the Ciao
ebsite in 2013, which is composed of 72,665 ratings from 17,615
sers on 16,121 items.
BookCrossing5 is a book recommendation dataset collected from

he BookCrossing community, which contains both explicit and implicit
eedback on books. We selected the first 5,000 users and 6,000 books
or our prediction.
MovieLens 1M (ML-1M)6 is a famous benchmark dataset for rat-

ngs on movies, which includes approximately 6,000 users and 4,000
ovies.

Table 2 shows more details of the real-world datasets that are used
n our experiments. Most datasets are sparse and over 99% of the
atings are unknown, while Jester is a dense dataset compared to the
thers, with over 17% of ratings are available.

.2. Performance evaluation

In this paper, we adopt the mean absolute error (MAE) and root
ean squared error (RMSE) to evaluate the performance of our models,
hich are both widely applied in matrix completion. Assume that

here are 𝑡 real ratings 𝑦1,… , 𝑦𝑡 and 𝑡 prediction ratings 𝑦̂1,… , 𝑦̂𝑡, the
AE and RMSE values are computed by 𝑀𝐴𝐸 = 1

𝑡
∑𝑡

𝑖=1 ‖𝑦𝑖 − 𝑦̂𝑖‖

nd 𝑅𝑀𝑆𝐸 =
√

1
𝑡
∑𝑡

𝑖=1(𝑦𝑖 − 𝑦̂𝑖), respectively. In our experiments, all
datasets are divided into an 80% training set and 20% testing set. We
evaluate the accuracy of estimations on testing set.

4.3. Experiments and analysis

Analysis of singular matrices
First, as there is a matrix inverse procedure in our framework, we

test the situation of singular matrices. If the kernel matrix is not invert-
ible, the framework will not work when computing [𝐾(𝑥𝑖, 𝑥𝑗)]𝑁𝑖,𝑗=1

−1.
We experiment our model on all seven tested datasets with different
neighbor number settings, and find that the phenomenon of singularity
only appears in Filmtrust and Ciao. Fig. 4 shows the percentage of
singular matrices for these two datasets.

In the experiments, we use the Gaussian kernel function with param-
eter 𝑐 = 0.01. From Fig. 4 we discover that as the number of neighbors
ncreases, the appearance of singular matrices decreases overall. The
owest percentage of singular matrices for Ciao is less than 1%, and the
ercentage for Filmtrust decreases to zero when the neighbor number
eaches 20. Considering that the other five datasets do not generate

3 http://jmcauley.ucsd.edu/data/amazon/.
4 https://goldberg.berkeley.edu/jester-data/.
5 http://www2.informatik.uni-freiburg.de/~cziegler/BX/.
6

6

https://grouplens.org/datasets/movielens/. n
Fig. 4. Percentage of singular matrices for Filmtrust and Ciao.

singular matrix, we believe that the occurrence of singular matrices
has limited negative impact on our model, especially when there are
enough neighbors. In the following experiments, to avoid the influence
of few singular matrices, we predict the rating by computing the
average value of the specific item rating vector when the kernel matrix
is singular.

Neighbor influence
Next, we conduct experiments to test our models with different

numbers of neighbors. Fig. 5 shows the influence of the neighbor
number on all tested datasets. The experimental results manifest that
the MAE and RMSE values first decrease with an increase in neigh-
bor numbers, and then increase or stay stable as neighbor numbers
increase. It is noticed that our previous analysis also shows that the lack
of neighbors may lead to singular matrix issue, which sometimes results
in the failure of the proposed methods. For most datasets, the model
with 15 or 20 neighbors achieves the best performance. However, for
he Jester and Amusic datasets, the MAE and RMSE values do not reach
he lowest point simultaneously, with RMSE usually requiring more
eighbors for the best performance. The results of these experiments
ndicate that moderate neighbor number significantly contributes to
he final estimation, whereas too many neighbors may lead to worse
erformance. This phenomenon might be because too many irrelevant
atings will have a negative effect on the final estimation.

In our experiments, when there are not enough candidate neigh-
ors, we sample other points randomly to ensure that the ratings are
stimated by enough reference points. Table 3 provides statistics on the
andom sampling of neighbors. Due to the sparsity in the BookCrossing
ataset, the frequency of random sampling in BookCrossing is higher
han that in Epinions. Both datasets achieve their best performance with
0 neighbors. Thus a proper setting of neighbor numbers maintains a
alance between the quality of neighbors and the number of sample
oints. For relatively dense datasets such as Jester and ML-1M, the
andom sampling rate is almost 0, with more neighbors not necessar-
ly leading to better performance in these datasets. It is shown that
xcessive neighbors have a negative influence on the final estimation,
egardless of whether the randomly selected neighbors are included in
he candidate points.

Finally we conduct experiments to explore the computational time
or interpolating per 1,000 predicting ratings with different neighbor

umbers, as shown in Table 4. The experiments are run on computer

http://jmcauley.ucsd.edu/data/amazon/
https://goldberg.berkeley.edu/jester-data/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
https://grouplens.org/datasets/movielens/

Expert Systems With Applications 168 (2021) 114436Z. Chen et al.
Fig. 5. Performance comparisons of neighbor number on all tested datasets except ML-1M. The primary axis records RMSE and the secondary axis records MAE.
i

a
s
F
t
w
i
i
w
i
W
b
k
T
a

4

a
a
L
e
a
M

d
T
f

Table 3
Statistics of the random sampling on Epinions and Bookcrossing.

Neighbors
required

Random
sampling rate

Average
sampling times

RMSE

Epinions

5 0.10% 1.99 1.1292
10 0.42% 3.90 1.0869
15 0.98% 5.49 1.0729
20 1.70% 7.32 1.0725
25 2.49% 9.34 1.0735
30 3.37% 11.33 1.0785

BookCrossing

5 3.01% 2.93 1.8262
10 5.79% 5.62 1.7673
15 7.64% 8.80 1.7609
20 9.22% 11.96 1.7600
25 10.67% 15.08 1.7689
30 11.72% 18.57 1.7727

Table 4
Average runtime of KMC with different neighbor numbers for interpolating per 1,000
predicting ratings.

Neighbor number 5 10 15 20 25 30 35 40

Runtime (s) 15.12 18.42 21.34 24.34 31.43 39.32 45.66 53.18

with an I5-7200U CPU and 8G RAM. We repeat the experiments 10
times and record the average runtime. The experiment results show that
the runtime increases when we select more neighbors for interpolation.
Associated with aforementioned analysis, it can be observed from the
table that 15 or 20 neighbors are good enough in terms of both time
cost and accuracy.

Multi-kernel framework
As to M-KMC, we adopt Gaussian kernels with different 𝑐 to map the

original data into different spaces. Based on experimental experience,
we set parameter 𝑐 to {0.01, 0.03,… , 0.39} with a step of 0.02, there-
fore, there are totally 20 different kernel spaces waiting for merging.
The weight of each kernel space 𝛼𝑡 is computed by the optimization
problem defined in the preceding section. These weights control the
contribution of each kernel, so that better results are obtained by the
proper non-linear combination of different kernels.

Epinions and BookCrossing are used as examples here of the analy-
sis. Table 5 shows the comparisons for KMC and M-KMC in Epinions
and BookCrossing datasets. Different values of parameter 𝑟 defined
in Eq. (19) are compared, as well as the simple average combination
for different kernel functions. When 𝑟 = 1, the experimental results
are equivalent to the linear model defined in Eq. (8). The experiments
7

demonstrate that M-KMC has greater improvement than KMC. The
Table 5
Performance comparisons for KMC and M-KMC.

Epinions BookCrossing

MAE RMSE MAE RMSE

KMC 0.8583 1.0757 1.3734 1.7658
M-KMC (average weighted) 0.8580 1.0755 1.3674 1.7609
M-KMC (r = 1) 0.8336 1.0626 1.3624 1.7578
M-KMC (r = 4) 0.8297 1.0617 1.3621 1.7576
M-KMC (r = 16) 0.8294 1.0616 1.3618 1.7574

models obtain better performance overall when 𝑟 increases, however, a
𝑟 value that is too large does not significantly improve performance.
The outcomes also indicate that calculating the average of multiple
kernels directly brings limited improvement compared to the single-
kernel models, which shows that the training for weights {𝛼𝑡}

𝑞
𝑡=1 is

ndispensable.
Figs. 6 and 7 show the weights of different kernel spaces in Epinions

nd BookCrossing. When the kernels are combined linearly (𝑟 = 1),
ome kernel spaces account for a large proportion of the final space.
or Epinions dataset, the kernel function with 𝑐 = 0.01 has a dis-
inct contribution in final estimations. Simultaneously, kernel functions
here parameter 𝑐 ranges from 0.01 to 0.09 play an important role

n generating final kernel matrices in BookCrossing. This phenomenon
ndicates that these kernels are adaptive in these datasets, which is
hy we select 𝑐 = 0.01 for our experiments on KMC. However, this

s contrary to the original intention of bringing in the MKL framework.
hen we introduce into parameter 𝑟 > 1, the deviations of weights

etween each kernel become smaller as 𝑟 increases, therefore, each
ernel works together instead of only one or several kernels working.
able 5 indicates that such a trick helps improve performance as
nalyzed before.

.4. Performance comparisons

In this subsection we compare our models with both the traditional
nd state-of-the-art approaches, with the compared algorithms included
s follows: NMF (Lee & Seung, 1999), Item-KNN (Sarwar et al., 2001),
LORMA (Lee et al., 2013), AutoRec (Sedhain et al., 2015), IIR-G (Sun
t al., 2015), KMF, MKMF (Liu et al., 2016), RRN (Wu et al., 2017)
nd DR (Kuchaiev & Ginsburg, 2018). Notice that LLORMA, KMF and
KMF are also methods applying kernel techniques.

The optimal experimental settings for the compared algorithms are
etermined by our experiments or suggested by the original studies.
he parameter settings for these compared algorithms are outlined as
ollows: (1) NMF: latent factor number 𝑓 = 100; (2) Item-KNN: set

Expert Systems With Applications 168 (2021) 114436Z. Chen et al.

t
f
i
𝛼
i
i
d
a
s
a
t
a

b
i
J
i
𝑐

Fig. 6. The weights for each kernel space on Epinions dataset.
Fig. 7. The weights for each kernel space on BookCrossing dataset.
max number of neighbors as 40; (3) LLORMA: global factor number
𝑓𝑔𝑙𝑜𝑏𝑎𝑙 = 10; (4) AutoRec: the dimension of hidden layer is set to 200,
he activation functions of hidden layer and output layer are sigmoid
unction and identity function, respectively. (5) IRR-G: 𝑓 = 10, the
mportance of regularization by implicit item relationships is set as
= 0.1; (6) KMF and MKMF: apply Gaussian kernels with 𝜎 ranging

n {0.3, 0.6, 0.9}; (7) RRN: set a single-layer LSTM with 40-dimensional
nput embeddings, 40-dimensional hidden layer and 20-dimensional
ynamic states; (8) DR: the dimensions of the 6-layer network are set
t {64, 64, 128, 64, 64} for Filmtrust dataset, while the other datasets are
et at {512, 512, 1024, 512, 512}. The drop probability is set 𝑝 = 0.8. For
ll learning algorithms we set the learning rate 𝑙𝑟 = 0.01 except that for
he DR that is set 𝑙𝑟 = 0.0005, and all regularization coefficients are set
t 0.01.

As to our proposed KMC and M-KMC, we set the number of neigh-
ors 𝐿 = 15 for Filmtrust, Amusic, Ciao, ML-1M and BookCross-
ng datasets, while 𝐿 = 20 for Epinions dataset and 𝐿 = 35 for
ester dataset. Parameter 𝛿 for generating similarity matrix is tuned
n {5, 10, 15, 20, 25, 30, 35, 40} for best performance. We select parameter
= 0.01 for KMC. The values of 𝑟 for M-KMC range in {2, 4, 6, 8}.

Especially, we tune the learning rate as 𝑙𝑟 = 0.0001 for M-KMC.
Tables 6 and 7 compare our models with other approaches. Five-fold

cross-validation is conducted and we record the average performance
and standard deviations. Comparing the two proposed models, M-KMC
performs better than KMC for all datasets. The comparative exper-
iments prove that our framework works effectively, and achieves a
performance that is competitive or superior to the other approaches.
Our approach performs better in the RMSE metric for six of the seven
tested datasets, and obtains the best performance in the MAE metric
for five of the seven datasets. Both KMC and M-KMC perform better on
8

most sparse datasets with over 99% missing ratings. Even for extremely
sparse datasets such as BookCrossing where over 99.9% ratings are
unknown, our models are competitive or even outperform on both MAE
and RMSE.

5. Conclusion

In this paper, we proposed a kernel-based framework KMC for
neighborhood-based recommender systems, which aimed to retrieve
missing ratings in the user–item interaction matrix. The model pro-
jected the original data into a new Hilbert space with RBF kernels
and realized the local matrix approximation. Associated with the inter-
polation condition, the weights of different neighbors were computed
by kernel matrices, so that the final estimations were conducted by
the dot product of weight vectors and rating vectors of neighbors.
This improved the performance of traditional NBMs because of better
representation of Hilbert space. Besides, we reformulated the widely
used Gaussian kernels with variation of MSD metric, which learned a
more effective low-dimensional representation for databases of recom-
mender systems. Furthermore, we presented the M-KMC that utilized a
multi-kernel framework to improve the performance of KMC. Different
from widely used linear combination of multiple kernels, a non-linear
strategy was adopted with the auto-weighted method. Substantial ex-
periments were conducted to analyze different parameters and proved
the effectiveness of our framework. The experiments demonstrated that
our models worked better than other related works on most datasets.

There remain several directions of extensions or improvements
for our models. More methods for kernel combination or feature co-
learning might be discovered from recent studies on multiview learn-
ing. Additionally, a more effective neighbor selection or similarity

Expert Systems With Applications 168 (2021) 114436Z. Chen et al.
Table 6
Performance comparisons for our models on all tested datasets with MAE (mean ± std). The last line of the table calculates the improvement (%) of
our model compared to other approaches that perform the best.

Filmtrust Epinions Amusic Jester Ciao BookCrossing ML-1M

NMF 0.6530 ± 0.6% 0.8852 ± 0.8% 0.7028 ± 0.7% 3.4370 ± 0.7% 1.1532 ± 0.7% 2.3276 ± 1.6% 0.7270 ± 0.1%
Item-KNN 0.6544 ± 0.2% 0.9900 ± 0.3% 0.7381 ± 0.2% 4.4486 ± 1.4% 0.8077 ± 0.5% 2.8816 ± 0.8% 0.7273 ± 0.2%
LLORMA 0.6396 ± 0.8% 0.8761 ± 0.6% 0.7789 ± 1.8% 3.2421 ± 𝟏.𝟐% 1.1937 ± 6.3% 2.2159 ± 1.2% 0.6762 ± 0.1%
AutoRec 0.6381 ± 1.1% 0.8944 ± 2.4% 0.7978 ± 1.6% 3.5221 ± 2.5% 1.2461 ± 2.2% 2.5887 ± 1.9% 0.6821 ± 0.7%
IRR-G 0.6183 ± 0.8% 0.8325 ± 0.8% 0.6608 ± 0.8% 3.9750 ± 1.3% 0.7627 ± 1.4% 1.3704 ± 1.5% 0.6751 ± 𝟎.𝟕%
KMF 0.6209 ± 0.9% 0.8535 ± 0.8% 0.7321 ± 1.0% 3.4218 ± 1.2% 0.8122 ± 1.5% 1.4016 ± 1.2% 0.6799 ± 0.8%
MKMF 0.6196 ± 0.8% 0.8520 ± 0.7% 0.7204 ± 0.9% 3.4012 ± 1.3% 0.8017 ± 1.7% 1.3977 ± 1.0% 0.6782 ± 0.5%
RRN 0.7123 ± 0.7% 0.9155 ± 1.9% 0.7484 ± 1.2% 4.2082 ± 1.1% 0.8171 ± 1.6% 1.3949 ± 1.1% 0.8703 ± 0.9%
DR 0.6990 ± 0.6% 0.8271 ± 0.9% 0.7389 ± 0.8% 3.4807 ± 0.7% 0.8423 ± 1.5% 1.4832 ± 0.7% 0.7764 ± 0.7%

KMC 0.6181 ± 0.3% 0.8583 ± 0.5% 0.6477 ± 0.6% 3.2743 ± 0.8% 0.7336 ± 1.0% 1.3734 ± 0.6% 0.7079 ± 0.6%
M-KMC 0.6137 ± 𝟎.𝟏% 0.8264 ± 𝟎.𝟒% 0.6351 ± 𝟎.𝟒% 3.2700 ± 0.9% 0.7288 ± 𝟎.𝟕% 1.3618 ± 𝟎.𝟕% 0.7077 ± 0.2%

Improve 0.7% 0.1% 3.9% – 4.4% 0.6% –
Table 7
Performance comparisons for our models on all tested datasets with RMSE (mean ± std). The last line of the table calculates the improvement (%) of
our model compared to other approaches that perform the best.

Filmtrust Epinions Amusic Jester Ciao BookCrossing ML-1M

NMF 0.8620 ± 0.9% 1.1480 ± 0.8% 1.0721 ± 1.2% 4.5241 ± 0.9% 1.6684 ± 1.0% 3.3416 ± 1.6% 0.9214 ± 0.2%
Item-KNN 0.8639 ± 0.3% 1.3225 ± 0.4% 1.0132 ± 0.2% 5.3306 ± 1.2% 1.0690 ± 0.6% 3.2692 ± 0.5% 0.9234 ± 0.3%
LLORMA 0.8601 ± 1.1% 1.1823 ± 0.9% 1.1644 ± 3.2% 4.3793 ± 1.1% 1.6653 ± 7.9% 3.1287 ± 1.5% 0.8644 ± 0.2%
AutoRec 0.8404 ± 1.1% 1.1533 ± 0.7% 1.1437 ± 1.6% 4.6457 ± 1.7% 1.7103 ± 0.4% 3.5435 ± 1.5% 0.8703 ± 1.1%
IRR-G 0.8155 ± 1.0% 1.0959 ± 0.6% 0.9141 ± 1.4% 4.9157 ± 0.9% 0.9901 ± 0.6% 1.7772 ± 1.0% 0.8551 ± 𝟎.𝟖%
KMF 0.8206 ± 1.2% 1.1256 ± 0.7% 0.9653 ± 1.1% 4.5231 ± 0.6% 1.0621 ± 0.7% 1.8011 ± 0.8% 0.8624 ± 0.5%
MKMF 0.8198 ± 0.9% 1.1248 ± 0.7% 0.9622 ± 1.2% 4.5091 ± 0.8% 1.0554 ± 0.5% 1.7928 ± 0.7% 0.8609 ± 0.4%
RRN 0.9049 ± 1.5% 1.1898 ± 0.9% 0.9770 ± 0.7% 5.1191 ± 1.1% 1.0248 ± 1.4% 1.7896 ± 0.9% 1.1560 ± 0.7%
DR 0.8915 ± 1.6% 1.0998 ± 0.8% 0.9978 ± 0.9% 4.5579 ± 0.8% 1.1261 ± 1.6% 1.9117 ± 1.8% 0.9972 ± 0.7%

KMC 0.8148 ± 0.8% 1.0757 ± 0.5% 0.8968 ± 0.9% 4.3170 ± 1.9% 0.9927 ± 0.6% 1.7658 ± 0.5% 0.9025 ± 0.5%
M-KMC 0.8118 ± 𝟎.𝟗% 1.0617 ± 𝟎.𝟔% 0.8926 ± 𝟎.𝟔% 4.3079 ± 𝟏.𝟓% 0.9846 ± 𝟎.𝟗% 1.7574 ± 𝟎.𝟕% 0.9022 ± 0.3%

Improve 0.5% 3.1% 2.4% 1.6% 0.6% 1.1% –
H

K

K

K

K

L

L

L

L

L

M

computation method would lead to a significant improvement for our
models. We may further explore more powerful similarity metrics be-
cause they are essential to our methods. We will explore more efficient
algorithms for recommender systems with kernel learning in the future.

CRediT authorship contribution statement

Zhaoliang Chen: Conceptualization, Formal analysis, Methodology,
Writing - original draft. Wei Zhao: Conceptualization, Formal analysis,
Methodology, Writing - revision. Shiping Wang: Funding acquisition,
Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was partially supported by the National Natural Science
Foundation of China (Nos. U1705262 and 61672159), the Technology
Innovation Platform Project of Fujian Province, China under Grant
(Nos. 2014H2005 and 2009J1007), the Fujian Collaborative Innovation
Center for Big Data Application in Governments, the Fujian Engineering
Research Center of Big Data Analysis and Processing.

References

Chen, J., & Li, X. (2019). Model-free nonconvex matrix completion: Local minima
analysis and applications in memory-efficient kernel PCA. Journal of Machine
Learning Research, 20, 142:1–142:39.

Chen, C., Li, D., Lv, Q., Yan, J., Shang, L., & Chu, S. M. (2017). GLOMA: Embedding
global information in local matrix approximation models for collaborative filtering.
In Proceedings of the 31st AAAI conference on artificial intelligence (pp. 1295–1301).
9

Chen, J., Lian, D., & Zheng, K. (2019). Improving one-class collaborative filtering via
ranking-based implicit regularizer. In Proceedings of the 33rd AAAI conference on
artificial intelligence (pp. 37–44).

Cruz, D. P. F., Maia, R. D., da Silva, L. A., & de Castro, L. N. (2016). Beerbf:
a bee-inspired data clustering approach to design rbf neural network classifiers.
Neurocomputing, 172, 427–437.

Fan, J., & Chow, T. W. S. (2018). Non-linear matrix completion. Pattern Recognition,
77, 378–394.

Fan, J., Zhang, Y., & Udell, M. (2020). Polynomial matrix completion for missing
data imputation and transductive learning. In The 24th AAAI conference on artificial
intelligence (pp. 3842–3849).

wang, W., Lee, H., Kim, S., Won, Y., & Lee, M. (2016). Efficient recommendation
methods using category experts for a large dataset. Information Fusion, 28, 75–82.

ang, Z., Peng, C., & Cheng, Q. (2016). Top-n recommender system via matrix
completion. In Proceedings of the 30th AAAI conference on artificial intelligence (pp.
179–185).

oren, Y. (2008). Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceedings of the 14th ACM SIGKDD international conference on
knowledge discovery and data mining (pp. 426–434).

uchaiev, O., & Ginsburg, B. (2018). Training deep autoencoders for recommender
systems. In Proceedings of the 6th international conference on learning representations.

uo, B.-C., Ho, H.-H., Li, C.-H., Hung, C.-C., & Taur, J.-S. (2013). A kernel-based feature
selection method for svm with rbf kernel for hyperspectral image classification.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
7(1), 317–326.

ee, J., Kim, S., Lebanon, G., & Singer, Y. (2013). Local low-rank matrix approximation.
In Proceedings of the 30th international conference on machine learning (pp. 82–90).

ee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755), 788.

i, H., Pan, S. J., Wan, R., & Kot, A. C. (2019). Heterogeneous transfer learning via
deep matrix completion with adversarial kernel embedding. In Proceedings of the
33rd AAAI conference on artificial intelligence (pp. 8602–8609).

iang, D., Altosaar, J., Charlin, L., & Blei, D. M. (2016). Factorization meets the
item embedding: regularizing matrix factorization with item co-occurrence. In
Proceedings of the 10th ACM conference on recommender systems (pp. 59–66).

iu, X., Aggarwal, C. C., Li, Y., Kong, X., Sun, X., & Sathe, S. (2016). Kernelized matrix
factorization for collaborative filtering. In Proceedings of the 2016 SIAM international
conference on data mining (pp. 378–386).

artinčić-Ipšić, S., Moibob, E., & Perc, M. (2017). Link prediction on Twitter. PLOS
ONE, 12(7), 1–21.

http://refhub.elsevier.com/S0957-4174(20)31097-6/sb1
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb1
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb1
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb1
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb1
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb4
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb4
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb4
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb4
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb4
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb5
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb5
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb5
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb6
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb6
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb6
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb6
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb6
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb7
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb7
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb7
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb11
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb11
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb11
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb11
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb11
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb11
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb11
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb13
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb13
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb13
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb17
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb17
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb17

Expert Systems With Applications 168 (2021) 114436Z. Chen et al.

P

Q

R

S

S

S

W

W

W

W

W

X

Y

Z

Ning, X., & Karypis, G. (2011). SLIM: Sparse linear methods for top-n recommender
systems. In Proceedings of the 11th IEEE international conference on data mining (pp.
497–506).

al, B., & Jenamani, M. (2018). Kernelized probabilistic matrix factorization for
collaborative filtering: exploiting projected user and item graph. In Proceedings of
the 12th ACM conference on recommender systems (pp. 437–440).

Park, Y., Park, S., Jung, W., & Lee, S.-g. (2015). Reversed cf: A fast collaborative fil-
tering algorithm using a k-nearest neighbor graph. Expert Systems with Applications,
42(8), 4022–4028.

ian, Y., Zhang, Y., Ma, X., Yu, H., & Peng, L. (2019). EARS: emotion-aware
recommender system based on hybrid information fusion. Information Fusion, 46,
141–146.

omani, L., Rossini, M., & Schenone, D. (2019). Edge detection methods based on RBF
interpolation. Journal of Computational and Applied Mathematics, 349, 532–547.

arwar, B. M., Karypis, G., Konstan, J. A., & Riedl, J. (2001). Item-based collabora-
tive filtering recommendation algorithms. In Proceedings of the 10th international
conference on world wide web (pp. 285–295).

edhain, S., Menon, A. K., Sanner, S., & Xie, L. (2015). Autorec: Autoencoders meet
collaborative filtering. In Proceedings of the 24th international conference on world
wide web (pp. 111–112).

un, Z., Guo, G., & Zhang, J. (2015). Exploiting implicit item relationships for
recommender systems. In Proceedings of international conference on user modeling,
adaptation, and personalization (pp. 252–264).
10
ang, M., Hua, X.-S., Yuan, X., Song, Y., & Dai, L.-R. (2007). Optimizing multi-graph
learning: towards a unified video annotation scheme. In Proceedings of the 15th
ACM international conference on multimedia (pp. 862–871).

ang, C., Liu, Q., Wu, R., Chen, E., Liu, C., Huang, X., & Huang, Z. (2018). Confidence-
aware matrix factorization for recommender systems. In Proceedings of the 32nd
AAAI conference on artificial intelligence (pp. 434–442).

ang, W., Zhang, G., & Lu, J. (2019). Hierarchy visualization for group recom-
mender systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(6),
1152–1163.

ang, C., Zhou, T., Chen, C., Hu, T., & Chen, G. (2019). CAMO: A collaborative
ranking method for content based recommendation. In Proceedings of the 33rd AAAI
conference on artificial intelligence (pp. 5224–5231).

u, C.-Y., Ahmed, A., Beutel, A., Smola, A. J., & Jing, H. (2017). Recurrent recom-
mender networks. In Proceedings of the 10th ACM international conference on web
search and data mining (pp. 495–503).

ue, H., Dai, X., Zhang, J., Huang, S., & Chen, J. (2017). Deep matrix factorization
models for recommender systems. In Proceedings of the 26th international joint
conference on artificial intelligence (pp. 3203–3209).

uan, W., He, K., Guan, D., Zhou, L., & Li, C. (2019). Graph kernel based link prediction
for signed social networks. Information Fusion, 46, 1–10.

hou, T., Shan, H., Banerjee, A., & Sapiro, G. (2012). Kernelized probabilistic matrix
factorization: Exploiting graphs and side information. In Proceedings of the 12th
SIAM international conference on data mining (pp. 403–414).

http://refhub.elsevier.com/S0957-4174(20)31097-6/sb20
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb20
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb20
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb20
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb20
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb21
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb21
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb21
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb21
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb21
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb22
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb22
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb22
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb28
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb28
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb28
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb28
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb28
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb32
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb32
http://refhub.elsevier.com/S0957-4174(20)31097-6/sb32

	Kernel meets recommender systems: A multi-kernel interpolation for matrix completion
	Introduction
	Related work
	Neighborhood-based models
	Kernel learning

	Our proposed models
	Similarity metric and neighbor selection
	Local kernel-based approximation
	Multi-kernel framework

	Experiments and analysis
	Descriptions of datasets
	Performance evaluation
	Experiments and analysis
	Analysis of Singular Matrices
	Neighbor Influence
	Multi-Kernel Framework

	Performance comparisons

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

