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ARTICLE INFO ABSTRACT

Keywords: In practical applications, multi-view data depicting objects from assorted perspectives can facilitate the
Information fusion with deep learning accuracy increase of learning algorithms. However, given multi-view data, there is limited work for learning
Multi-view learning discriminative node relationships and graph information simultaneously via graph convolutional network that

Graph convolutional network

. 8 e has drawn the attention from considerable researchers in recent years. Most of existing methods only consider
Semi-supervised classification

the weighted sum of adjacency matrices, yet a joint neural network of both feature and graph fusion is
still under-explored. To cope with these issues, this paper proposes a joint deep learning framework called
Learnable Graph Convolutional Network and Feature Fusion (LGCN-FF), consisting of two modules: feature
fusion network and learnable graph convolutional network. The former aims to learn an underlying feature
representation from heterogeneous views, while the latter explores a more discriminative graph fusion via
learnable weights and a parametric activation function dubbed Differentiable Shrinkage Activation (DSA)
function. The proposed LGCN-FF is validated to be superior to various state-of-the-art methods in multi-view
semi-supervised classification.

1. Introduction information and scarce supervision signals. Besides, GCN also has a

faster training speed, because the graph convolution operation is an

In real-world applications, a large amount of information exists approximation of a truncated Chebyshev polynomial. A large number of

in varied forms, because an object can be described from heteroge- studies have revealed the remarkable performance boosting of GCN in

neous data sources. For example, streaming media can be illustrated various learning tasks [13-15], especially in semi-supervised learning
by features of frames, audio, and textual descriptions, which come tasks that only have a small number of labeled nodes.

into being multi-view data. This motivates researchers to discover Although most multi-view datasets do not naturally contain the

the latent consistent information across diverse views [1-3]. Instead
of directly exploiting features from heterogeneous sources, it should
be helpful to extract node relationships among samples and propa-
gate supervision signals across nodes, which motivates us to conduct
graph learning on multi-view data. Graph learning is a crucial field
of machine learning in decades and has been extensively applied to
a multitude of practical applications, such as node classification [4—
6], social network analysis [7-9] and computer vision [10-12]. In
recent years, Graph Convolutional Network (GCN) has been widely
explored for its powerful ability to integrate connectivity patterns and

topological structure like traditional citation and link prediction data-
sets, samples in real-world applications often have implicit connections
that can be extracted. In light of this, we can mine the hidden relation-
ships among samples from existing features and generate multifarious
graphs. These estimated graphs generally describe node relationships
from various perspectives with their complementarity. As shown on the
left side of Fig. 1, most existing methods utilize feature fusion methods
or graph fusion models before applying GCN, both of which are critical
for the performance of downstream multi-view learning tasks.

feature attributes with given graph-structured data [5]. Owing to the A multi-view learning framework should get more benefits if it can
ability to propagate node features to their neighbors based on the learn an intact node representation from both feature fusion and graph
renormalized adjacency matrix, GCN can make full use of existing node fusion problems. To our best knowledge, there is very limited work on
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Fig. 1. A brief comparison of the proposed LGCN-FF and other methods. Compared with most multi-view learning models (left) that only concentrated on either feature fusion
approaches or graph fusion approaches (e.g., [16,17]), LGCN-FF (right) is a joint framework that simultaneously trains a feature fusion network and a learnable graph fusion

network with a multi-stage training strategy.

the joint training of feature and graph fusion learning, which is benefi-
cial to exploring co-optimal solutions to both two problems. Thus, one
challenge is how to solve feature and graph fusion problems that are
difficult to be optimized jointly in an end-to-end framework, which is
the primary problem we need to address in this paper. Besides, as we
have discussed, multi-view data in the real world generally do not exist
as the network topology, attributed to which most algorithms prepro-
cessed the original data and converted them to graph-structured data.
Because k-Nearest Neighbor (KNN) can estimate edges among nodes
via calculating similarities of samples and exploring nearest neighbors,
most of the existing methods generated graphs via KNN. However,
some studies have pointed out that this is sometimes inaccurate and
may yield undesired links between samples [18]. Previous works gen-
erally applied these adjacency matrices without training or refining
neighborhood relationships [16,19,20], which possibly resulted in the
performance decline of multi-view learning. Although some researchers
have successfully leveraged GCN to deal with multi-view data [16,17],
they only considered a weighted combination of different adjacency
matrices. This is problematic because a linear weighted sum of adja-
cency matrices may amplify and aggregate incongruous noises from
distinct graphs estimated by KNN. Therefore, a well-established graph
refining procedure should be conducted after numerous graphs are
integrated into a unique one, so that the negative impact of undesired
connections is mitigated.

Consequently, we propose an end-to-end framework dubbed Learn-
able Graph Convolutional Network and Feature Fusion (LGCN-FF). A
brief description is shown on the right side of Fig. 1. LGCN-FF is
comprised of two fundamental components: a feature fusion network
and a learnable GCN network. The former aims to resolve the feature
fusion problem with given multi-view data, and the latter is to learn
adjacency matrix fusion with multiple graphs generated from distinct
features. Feature fusion is realized by multiple sparse autoencoders
and a fully-connected network that is responsible for incorporating
all features. Adjacency matrix fusion is first conducted by a weighted
sum of all graphs, where all weights are learned automatically. For
the purpose of learning a more discriminative graph representation,
we present a learnable function termed as Differentiable Shrinkage
Activation (DSA) to further explore adjacency matrix fusion, which
adaptively refines feasible and robust node relationships during train-
ing. It can be regarded as an analogous pattern to soft thresholding
operator in Iterative Shrinkage Thresholding Algorithm (ISTA) [21] and
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Singular Value Thresholding (SVT) [22], which are applied to address
sparse coding and low-rank approximation problems, respectively. Each
iteration of the proposed LGCN-FF contains four optimization steps
in light of their own loss functions. Therefore, LGCN-FF is a joint
framework that learns features and node relationships simultaneously.

The main contributions of this paper are as follows:

(1) Propose an end-to-end neural network framework for multi-view
semi-supervised classification, which integrates sparse autoencoders
and a learnable GCN to jointly learn intact representations of multiple
features and graphs.

(2) Construct a learnable GCN framework with adaptive weights
and a parametric DSA function, both of which mine more discrimi-
native and robust representations of graphs from heterogeneous views
automatically.

(3) Develop a multi-step optimization strategy for LGCN-FF via back
propagation, each of which updates corresponding parameters while
fixing other learnable parameters.

(4) The proposed framework is leveraged to conduct multi-view
semi-supervised classification tasks, and achieves superior performance
compared with other state-of-the-art graph-based algorithms.

The rest of this paper is organized as follows. Related works on
GCN, multi-view learning, feature and graph fusion are reviewed in
Section 2. We elaborate the proposed LGCN-FF in Section 3, including
the detailed introduction of each component and algorithm analyses.
Finally, the effectiveness of the proposed framework is verified via
substantial experiments in Section 4, and our work is concluded in
Section 5.

2. Related work
2.1. Graph convolutional network

In this subsection, we first review recent works on GCN. A spectral
graph convolution operation is conducted by a signal x € R” and a
filter g, = diag(0), formulated as

8o *x X = UggUTx, (€8]

where U denotes the matrix of eigenvalues of the normalized graph
Laplacian matrix. For the purpose of saving computational resources,
Kipf et al. [5] performed the first-order approximation of truncated
Chebyshev polynomial and imposed it on the node classification tasks
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with topological networks. Specifically, the /th layer of a spectral GCN
is formally defined as

HO = o("‘%AD‘%H“—”w(”), @)
where A = A + I denotes the adjacency matrix considering the self-
connections, and [D];; > . [.7&],- e Layer-specific weight matrix is de-
noted by W®. The graph convolution operation can be regarded as
a special form of Laplacian smoothing [23], which propagates neigh-
borhood features across the whole graph. Due to the encouraging
performance of GCN, many variant algorithms have been explored.
For example, Xu et al. put forward an innovative answer-centric ap-
proach dubbed radial graph convolutional networks to cope with the
visual question generation tasks [24]. Liu et al. integrated GCN with
a hidden conditional random field to reserve the skeleton structure
information during the classification stage [25]. Bo et al. investigated
the low-frequency and high-frequency signals in a graph, and pro-
posed a model that adaptively integrated different signals during mes-
sage passing [26]. A variant of GCN was derived through a modified
Markov diffusion kernel, which explored the global and local contexts
of nodes [27]. Guo et al. exploited GCN to propagate features over the
relationship affinity matrix, generating relationship-regularized repre-
sentations of objects to produce the scene graph [28]. A convolution op-
erator on the multi-relational graph was developed, based on which the
proposed multi-dimensional convolution operator achieved the eigen-
value decomposition of a Laplacian tensor [29]. Lei et al. established
the graph receptive fields according to diffusion paths and applied them
to build a compact graph convolutional network [30]. A multi-stage
GCN-based framework was presented with the self-supervised learning
to improve the generalization performance on the graph with limited
supervised information [31]. These GCN-based works have significantly
promoted the performance of various learning tasks in both Euclidean
and non-Euclidean domains.

2.2. Multi-view learning

Multi-view learning that leverages assorted types of features from
heterogeneous views has promoted the performance of various machine
learning tasks [32]. Traditional methods including Supporting Vector
Machine (SVM), random forest and AdaBoost algorithm were applied
to learn robust multi-view representations [33,34]. For example, Sun
et al. proposed a multi-view semi-supervised learning framework based
on SVMs, which integrated the manifold regularization and the multi-
view regularization [35]. Xu and Sun adopted the Adaboost algorithm
in the multi-view learning scenario, which combined multiple learn-
ers to output the hypothesis [36]. In recent years, many multi-view
learning models with complex objectives were further proposed. A
multi-view and multi-feature learning framework was constructed to
simultaneously consider the fusion of features and views, which re-
fined a discriminant representation from distinctive classes [37]. Chen
et al. proposed a joint framework for multi-view spectral clustering by
learning an adaptive transition probability matrix [38]. The nuclear-
norm-based optimization method was proposed to conduct multi-view
image data fusion via a joint learning framework [39]. Late fusing
incomplete multi-view clustering was proposed to learn a cluster assign-
ment from distinct views to exploit a consensus clustering matrix [40].
AE?-Nets utilized inner autoencoders to perform view-specific repre-
sentation learning, and adopted the outer autoencoders to implement
multi-view information encoding [41]. Wen et al. presented an effective
incomplete multi-view clustering framework to make full use of the lo-
cal geometric information and the unbalanced discriminating powers of
incomplete multi-view observations [42]. Sparsity-based optimization
methods are also essential in multi-view learning [43,44]. For instance,
Sun et al. proposed a sparse semi-supervised learning framework, which
adopted scarce unlabeled data and a few labeled data in objective
functions to accelerate function evaluations [45]. Du et al. presented
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a differentiable bi-sparse multi-view co-clustering algorithm, which
transformed sparse constraints into equivalent deep networks [46]. In
this paper, we also apply sparse autoencoders to get sparse outputs in
the proposed framework. Differing from these previous works, we need
to generate an overcomplete underlying representation from multi-view
features that have different dimensions, which contains intact node
characteristics of all views.

2.3. Feature or graph fusion

Effective feature or graph fusion is universally applied to the multi-
view data processing to achieve desired learning performance, which
takes advantage of full observations from multi-view representations.
Zhou et al. fused information from multiple kernels to improve the
performance of multi-kernel clustering [47]. Tang et al. proposed a
deep neural network that recurrently fused and refined multi-scale
deep features [48]. Graphs of multiple views can be integrated into
a consistent global graph, whose Laplacian matrix is constrained with
multiple strongly connected components [49]. Huang et al. put forward
a unified multi-view image data fusion model on the basis of nuclear
norm optimizations [50]. [51] paid attention to preserving the local
structure of data while conducting the graph fusion. A graph neural
network-based fusion mechanism was designed to extract the comple-
mentary information across views [52]. [53] learned graph matrices
of heterogeneous views, and a unified graph matrix is recovered via
a mutual reinforcement manner. A unified framework was proposed
by introducing a co-training strategy into the GCN framework, where
the graph information embedded in multiple views is explored adap-
tively [16]. Nonetheless, most of them only concentrated on either
graph fusion or feature fusion, both of which influenced the perfor-
mance of GCN considerably. It is pivotal to develop a framework with
a co-training pattern that can conduct feature fusion and graph fusion
simultaneously. In the following section, we will elaborate the proposed
method to solve this issue, being the main contribution of this paper.

3. The proposed method

For the purpose of jointly learning feature fusion and graph fusion,
we develop an end-to-end unified neural network framework consisting
of two primary components: feature fusion network and learnable
GCN. The optimization procedure of one iteration in this framework
is divided into multiple steps, inspired by the Alternating Direction
Minimization (ADM) [54] strategy. In particular, each independent
optimization step has its own loss function, all of which make up a
complete training iteration of the whole network. Given m samples
with n features, the proposed LGCN-FF aims to solve semi-supervised
classification problems with given multi-view data X = {X1, ..., X"}
and the scarce supervision signal Y € RI?X¢, where X e R™m
denotes the features of the vth view with totally V' views, Y is the
incomplete binary label matrix generated from the labeled sample set
Q that satisfies |22| < m. Namely, only a small proportion of samples
provide labels for supervision. Fig. 2 provides a detailed illustration
of the proposed LGCN-FF. Feature fusion aims to integrate multi-view
features with varying dimensions into an intact representation with the
same dimension, exploring the underlying features. Learnable GCN is
supposed to merge multiple adjacency matrices, generating a unique
graph with better robustness and generalization.

3.1. Feature fusion network

In order to tackle multi-view data consisting of various features with
varied dimensions and explore the underlying information across mul-
tiple views, the proposed LGCN-FF firstly projects original multi-view
representations onto a shared latent space. Considering that feature
dimensions of multiple perspectives may extremely differ, it is not
applicable to mapping these features onto the same compressed latent
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Fig. 2. Structure of the proposed LGCN-FF, which consists of a feature fusion network and a learnable GCN, where nodes with different colors indicate nodes belonging to different
classes. LGCN-FF is an end-to-end framework whose learnable parameters are updated by a multi-step optimization strategy. Intact representations of both multi-view features and

graphs are learned simultaneously to promote the performance of GCN.

space. Therefore, we employ sparse autoencoders to explore overcom-
plete underlying representations for all views. Each view corresponds to
a view-specific sparse autoencoder, and these sparse autoencoders map
the original features onto the sparse space with the same dimension.
Formally, the output O*?) € R"™% of the Ith layer for the vth sparse
autoencoder is defined as

09 = 5 (OU-TOWED) 1 ) @)

where W € Ré-1%di and b%” € R are layer-specific weight and
bias, respectively. The input of the vth sparse autoencoder is X,
i.e.,, 00 = X®, Here, o(-) is the layer-specific activation function.
The loss function of the sparse autoencoder in the vth view is

X© @

; 1
£& = Lo0 - x| + g, el

where Dy, is the Kullback-Leibler divergence and g controls the
sparsity penalty degree. Hyperparameter ¢ is the value maintaining
the sparsity, and ¢ is the average of the distribution of latent neuron
activations. Kullback-Leibler divergence is calculated by

(1-9)
1-9)

In order to fuse the hidden features from diverse perspectives into
a shared feature vector, we further utilize a fully-connected neural
network to carry out the feature fusion task. Assuming that there are
a total of L layers in the fully-connected neural network, the forward
propagation in the /th layer is computed by

Dk (0lld) )]

=olog§+(1—o>log

6" =0 (GIIWY +b() ), )
where G© = H. The matrix H is also a learnable input updated
by gradient descent and back propagation techniques. We project the
learned H onto various view-specific latent features {0(%’”)};’:1 via a
trainable fully-connected network. In fact, the trainable H also serves
as the shared node representation in the learnable GCN. A two-step

optimization strategy is employed for updating {W(’) b%} 1~ and H.
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Both two steps share the same reconstruction loss function as defined
below:

L ¥
EZ 7

v=1

Ly,

'G(L) _ 0(% v)

2

With the assumption that features of each single view can be rebuilt
from the intact common representation H by trainable weights and
biases in the fully-connected network, Eq. (7) is regarded as the trade-
off of reconstruction errors among heterogeneous views and explores
the shared underlying features. We present the details of optimization
steps in Section 3.3.

3.2. Learnable graph convolutional network

In this subsection, we present a learnable GCN which automatically
integrates the adjacency matrices generated by multiple views and
learns a graph containing more discriminative node relationships.
Firstly, the adaptive weighted sum of adjacency matrices is obtained by

4
A, =) 7AW, ®

v=1

where AV = (]N)(”))_%A(”)(ﬁ(”))_% is the initial renormalization adja-
cency matrix of the vth view, and #(*) is the automatically learned
view-specific weight coefficient. The initialization of adjacency matri-
ces can be conducted via the KNN method. Namely, we evaluate the
node similarities according to their features with Gaussian heat kernel,
and then select the top-k similar samples for each node as its neighbors,
on the basis of which an initial graph is constructed. Owing to the
multi-view features, we can generate V different initial graphs. Because

{7r(”)}L’:1 is constrained with ZL/:I 7@ = 1, we employ the softmax
renormalization at each epoch as
()
€X] a
70 < Vp(—) 9
X exp (7)
forv=1,...,V.
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Nevertheless, a straightforward weighted sum of adjacency matrices
may not be sufficiently feasible for multi-view graph learning, because
a linear weighted sum of all graphs may yield undesired connections
between nodes in the fused graph. Besides, attributed to the fact that
the neighborhood relationships are estimated by KNN, which may be
not accurate enough, a data-driven refining process should be taken
to explore a more comprehensive graph fusion without corrupting
the structure and characteristic information of the original graphs. In
order to achieve an optimal adjacency matrix fusion for the given
task, we propose the Differentiable Shrinkage Activation (DSA) function
denoted by p(-) to refine the weighted adjacency matrix. Because GCN
is developed with the precondition that the graph should be undirected,
we require that the output of p(A,) should also be symmetric. To this
end, the learnable DSA function p(-) is defined as

p(A)=A;OReLU(S - ©), 10)

where © is the Hadamard product (entry-wise product), S € R™"
denotes the learnable coefficient matrix and ® € R™ ™ controls the
thresholds of node relationship activations. For the sake of theoretic
strictness and better interpretation, it is required that S and ® should
be symmetric. Therefore, we define the coefficient matrix S as

S = Sigmoid (1 (5 +57)). an
which is parameterized by a learnable matrix S € R™ ™. On the basis
of Eq. (11), the proposed method can learn an edge-specific coefficient
for each edge of the undirected graph, which automatically shrinks
node relationships with coefficient values ranging in [0, 1].

In order to reduce local data noises and construct a sparser graph,
the learnable matrix ® in Eq. (10) is considered as a thresholding
matrix controlling the edge activation. For simplicity and theoretical
rigor, we define the entry of the thresholding matrix as

[®]ij = [®]ji = Sigmoid(§,), Vi< j<m (12)

with 6 = [0, ...,0,,], where 0 is a learnable vector and Sigmoid(-) admits
the non-negativity of thresholders. Consequently, ® is symmetric and
promotes the sparseness of outputs calculated by Eq. (10), which can
also be regarded as trainable biases of the coefficient matrix. It is
noted that only the node relationship information whose coefficient
is greater than its corresponding thresholding value can be activated.
DSA function is beneficial for improving the performance of GCN, due
to the ability of automatical feature learning via coefficient matrix
and thresholding values. Actually, it is an analogous pattern as shrink-
age function widely employed in the proximal optimization which
promotes the sparse or low-rank property, e.g., the soft thresholding
operator in ISTA [21] or SVT [22] algorithms. However, the classical
thresholders are generally hyperparameters that should be predefined,
and all signals share the same fixed thresholders. Thus we transform
soft thresholding operators into a trainable activation function so that
the neural networks can learn a tailored thresholder matrix by back
propagation with given tasks and datasets. We initialize S randomly to
compute S, and initialize 6 as a vector to generate ® in the beginning
of training. With these previous analyses, the /th layer of the learnable
GCN is formulated by

H) =& (p(AS)H(I_l)Wng)cn> , (13)

where H® = H. Namely, the trainable H obtained in the previous
module becomes the unique common representation of multiple views
and is regarded as the input node features in GCN. We use a widely em-
ployed 2-layer learnable spectral GCN as an example, which computes
the node embedding Z with

Z = softmax (p(AS)O' (p(AS)HW(D )

(2
Igen w ) :

lgen (14)

For a semi-supervised classification task, the loss function of the learn-
able GCN is defined by the cross-entropy error over semi-supervised in-
formation generated from the labeled sample set £, as shown
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Algorithm 1 Training Framework of LGCN-FF
Input: Multi-view data X = {X, ..., X%} and semi-supervised infor-
mation Y € RI€Mxe,
Output: Node embedding Z.
1: Initialize weights and biases of sparse autoencoders;
2: Initialize weights, biases and learnable input H of fully-connected

networks;
3: Initialize learnable weights {z() = %}L’: » S € R™™ and 0 =
[6,...,0,] of learnable GCN;
4: Initialize adjacency matrices A, ... | A) via KNN;
5: while not convergent do
6: forv=1-1Vdo
7: Compute 02" and O of the vth sparse autoencoder with
Equation (3);
8: Update {W% pl:0)y L, with back propagation;
9: end for
10: forv=1-V do
11: Compute G of the fully-connected network with Equation
(6);
12:  end for
13:  Update {W%,b(;z } 1L= , with back propagation;
14 forv=1-V do
15: Compute G of the fully-connected network with Equation
(6);
16: end for
17:  Update H with back propagation;
18:  Compute Z = HD of the learnable GCN with Equation (13);
19:  Update {W;QM}IL= 1 (7)Y, § and © with back propagation;

20: end while
21: return Node embedding Z.

below:

¢
Elgcn =- Z Z YijanU’

i€Q j=1

(15)

where Y € RI®¢ is the incomplete label matrix generated from Q
satisfying | Q2| < m.

3.3. Training strategy

The proposed LGCN-FF is an end-to-end neural network framework
with a multi-step optimization method, as described in Algorithm 1.
The proposed model aims to solve graph fusion problems, feature
fusion problems and downstream classification problems jointly. How-
ever, a unified objective target of these problems is complex and not
jointly convex for all trainable variables. If we directly optimize the
whole framework with a loss function that includes all optimization
targets, it is difficult for the model to get the optimal variables, and
the loss may even not converge. Consequently, we follow the ADM
strategy [54] which optimizes variables in each subproblem when
fixing other irrelevant variables. Theoretically, this is beneficial to the
model to obtain the optimal solutions during training, because each
subproblem is fully optimized. The optimization of this framework is
divided into the following four steps: optimizing trainable weights and
biases of sparse autoencoders, optimizing trainable weights and biases
of the fully-connected network, optimizing the trainable input H, and
optimizing trainable parameters in learnable GCN. In an independent
training iteration, each step performs one-step forward propagation,
and then conducts back propagation with fixed uncorrelated variables.
It is noticed that each step optimizes step-specific variables via its
own loss function, i.e., all sparse autoencoders in the first step employ
Eq. (4), the second and the third steps share the same loss function
defined in Eq. (7), and the final step applies Eq. (15). Although the
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Table 1

A brief description of all test multi-view datasets.
Datasets # Samples # Views # Features # Classes Data types
ALOI 1,079 4 64/64/77/13 10 Object images
BBCnews 685 4 4,659/4,633/4,665/4,684 5 Textual documents
BBCsports 544 2 3,183/3,203 5 Textual documents
MNIST 10,000 3 30/9/9 10 Digit images
Wikipedia 693 2 128/10 10 Textual documents
MSRC-v1 210 5 24/576/512/256/254 7 Object images
Reuters 18,758 5 21,531/24,892/34,251/15,506/11,547 6 Textual documents

Table 2

Classification accuracy (mean% and standard deviation%) of all compared semi-supervised classification methods with 10% labeled samples as
supervision, where the best performance is highlighted in bold and the second best result is underlined. Limited by the computational complexity
of algorithms and machine resources, some models encounter out-of-time or out-of-memory error on MNIST and Reuters datasets, marked with

w_»

Datasets\Methods ALOI BBCnews BBCsports MNIST Wikipedia MSRC-v1 Reuters
KNN 45.7 (3.1) 38.3 (9.6) 38.3 (9.5) 88.8 (0.4) 58.7 (3.0) 52.9 (8.8) 34.4 (0.5)
SVM 41.5 (6.6) 76.7 (7.6) 73.4 (4.9) 87.2 (1.3) 62.4 (4.2) 58.9 (5.9) 48.7 (0.3)
AdaBoost 69.9 (9.5) 49.6 (6.6) 55.1 (9.8) 63.3 (6.0) 53.1 (3.4) 33.5 (5.2) 54.0 (0.2)
AMGL [55] 82.4 (3.3) 52.3 (5.5) 55.6 (1.4) 88.5 (0.2) 10.1 (0.8) 85.9 (1.8) -

MVAR [56] 72.9 (5.5) 75.3 (5.5) 83.7 (3.8) 85.3 (0.8) 61.2 (3.4) 54.8 (7.5) 64.6 (0.3)
MLAN [51] 87.6 (1.6) 74.1 (0.9) 62.6 (2.2) 88.6 (0.3) 10.2 (0.8) 82.2 (5.4) -

AWDR [57] 93.6 (1.9) 85.7 (1.4) 81.3 (3.3) 78.1 (0.3) 62.5 (5.8) 57.7 (7.0) 61.3 (0.6)
HLR-M?VS [58] 87.7 (1.7) 78.1 (2.8) 84.6 (0.4) - 36.5 (3.4) 79.6 (8.4) -
ERL-MVSC [59] 90.5 (2.7) 85.9 (2.2) 90.3 (1.9) 89.5 (0.3) 51.6 (2.3) 73.3 (3.7) -

GCN fusion [5] 92.6 (1.2) 89.6 (1.8) 87.0 (2.0) 89.2 (0.5) 60.1 (0.6) 68.6 (7.2) 55.4 (0.3)
SSGCN fusion [27] 93.4 (1.0) 89.7 (5.5) 94.1 (1.2) 89.3 (0.1) 62.1 (0.4) 70.3 (4.9) 56.8 (0.2)
Co-GCN [16] 96.5 (0.4) 81.9 (1.5) 84.8 (1.4) 89.9 (0.4) 57.9 (0.7) 62.9 (4.4) 60.2 (0.6)
LGCN-FF 97.1 (0.6) 91.2 (0.9) 98.2 (0.6) 90.2 (0.3) 67.4 (1.5) 90.4 (2.0) 67.3 (0.5)

formulated problem is optimized separately in the same iteration with
the output of the former optimization becoming the input of the latter
one, the whole framework is organized by ADM strategy so that each
convex subproblem can be solved effectively. The trainable parameters
in the whole framework are listed as follows.

. L) 1) LY
1. Feature fusion network: {W®%?” b} et
2. Learnable GCN: {z®})_, S, 0 =[0;,...,0,] and {W{)

(OIENORYS
and {ch’bfc}lzl'

2
}l=l'

At each iteration, given multi-view data {X® € ]R’”X"}L’ZI with V
views, the computational complexity for sparse autoencoders and the
feature fusion network is @2V mnd + md?) if all embeddings are pro-
jected onto a d-dimension vector with d <« n. The forward propagation
of learnable GCN costs O(mn + md?).

4. Experimental analyses
4.1. Experimental settings

4.1.1. Datasets description

The proposed LGCN-FF framework is utilized to perform semi-
supervised classification tasks on several real-world multi-view
datasets. Seven publicly available multi-view datasets are selected for
the performance evaluation, as listed below:

« ALOI': This is an image dataset which contains objects that are
taken under varied light conditions or rotation angles. Multi-view
features including 64-D RGB color histograms, 64-D HSV color
histograms, 77-D color similarities and 13-D Haralick features are
involved.

BBCnews?: It is a collection of news reports which covers poli-
tics, entertainment, business, sport and technology fields. There
are totally four different textual features extracted from various
segments to describe the news.

1 http://aloi.science.uva.nl.
2 http://mlg.ucd.ie/datasets/segment.html.
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BBCsports®: Different from BBCnews, it is a dataset consisting of
five different areas from BBC sport websites, including football,
athletics, cricket, rugby and tennis news, illustrated from two
distinct views.

MNIST*: It is a well-known dataset of handwritten digits, where
three types of features are extracted: 30-dimension IsoProjection,
9-dimension Linear Discriminant Analysis (LDA) and 9-dimension
Neighborhood Preserving Embedding (NPE) features.
Wikipedia®: It is an article dataset that consists of 693 documents
with 10 categories, which was crawled from Wikipedia website.
Each entry is represented as two textual feature representations.
MSRC-v1°: It is a well-known image dataset with totally eight
classes. Following previous work, a subset of this dataset with
seven classes is applied. There are five visual features extracted
from each image in sum: 24-D color moment, 576-D Histogram
of Oriented Gradients (HOG), 512-D GIST, 256-D local binary
pattern and 256-D CENTRIST features.

Reuters’: This is a subset of Reuters dataset containing feature
representations of documents that were written in five different
languages: English, French, German, Spanish and Italian. Each
language corresponds to an independent view.

A statistical summary of these datasets is presented in Table 1,
including the numbers of views, features and classes.

4.1.2. Compared methods

We compare the performance of the proposed LGCN-FF with the
following baselines: KNN, SVM, AdaBoost, AMGL [55], MVAR [56],
MLAN [51], AWDR [57], HLR-M2VS [58], ERL-MVSC [59], GCN

http://mlg.ucd.ie/datasets/bbc.html.
http://yann.lecun.com/exdb/mnist/.
http://www.svcl.ucsd.edu/projects/crossmodal/.
http://riemenschneider.hayko.at/vision/dataset/task.php?did=35.
http://archive.ics.uci.edu/ml/machine-learning-databases/00259/.

N o o o~ w
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Fig. 3. The varied performance of all compared methods as the ratio of labeled data ranges in {0.05,0.10,...,0.50} on ALOI, BBCnews, BBCsports, MNIST, Wikipedia and MSRC-v1

datasets.

(a) ALOI (b) MSRC-v1

Fig. 4. Visualization of weighted adjacency matrices (the first row) and the adjacency
matrices learned by LGCN-FF (the second row) with selected datasets, where darker
colors indicate higher element values of matrices. This figure only exhibits partial ad-
jacency matrices for a better presentation, where red boxes highlight node connections
that diminish or disappear.

fusion [5], SSGCN fusion [27] and Co-GCN [16]. Most of these com-
pared methods are graph-oriented algorithms, among which GCN fu-
sion, SSGCN fusion and Co-GCN are based on GCN. Because the
original GCN and SSGCN models are not able to directly process multi-
view data, we compute the average adjacency matrix before graph
convolutions. It is noted that Co-GCN is a state-of-the-art GCN-based
framework for multi-view learning. Actually, only three GCN-based
methods are involved in experiments, attributed to the fact that limited
work has focused on GCN conducting downstream classification tasks
with multi-view data. This also amplifies the contribution of this work.
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4.1.3. Parameter settings

For most parameter settings, we follow the original settings of com-
pared methods if feasible. Note that AMGL is a parameter-free frame-
work thus we do not need to predefine extra hyperparameters. In par-
ticular, some parameter settings for compared methods are empirically
set for better performance, as follows:

MVAR: the trade-off weight for each view is tuned as 4 = 1000,
and the redistribution parameter over views is set as r = 2;
MLAN: the number of adaptive neighbors is tuned in [1, 10];
AWDR: the trade-off parameter is fixed as 1 = 1.0;

HLR-M?VS: weighted factors are set as A; = 0.2 and 4, = 0.4;
ERL-MVSC: hyperparameters are set asa =2 and f =y = 1.
GCN fusion and SSGCN fusion: a 2-layer GCN is employed and
the learning rate is set as 0.001;

Co-GCN: the settings of the convolutional layers and learning rate
are the same as those in GCN fusion.

As to LGCN-FF, we empirically adopt sparse autoencoders with
the dimensions of latent representations selected from {256,512, 1024,
2048}. Adam optimizer is employed to update all learnable parameters
with learning rate /r = 0.01 for the feature fusion network and learnable
GCN. For all sparse autoencoders the learning rate is set to /r = 0.001.
We utilize £,-norm as regularization for all learnable parameters and
set weight decay as 0.01. Activation functions of the learnable GCN
and the fully-connected network are set as ReLU(-). Sigmoid function
is adopted as the activation function for sparse autoencoders. Initial ad-
jacency matrices are constructed by KNN. The dropout rate of learnable
GCN is set as 0.3. The default setting for hyperparameter controlling the
sparsity penalty degree is § = 1. The maximum number of iterations is
set as 500. In this paper, the proposed LGCN-FF framework is imple-
mented by PyTorch platform and run on the machine with R9-5900X
CPU, Nvidia RTX 3060 GPU and 32G RAM.

4.2. Semi-supervised classification

Classification Results: The performance of all compared methods
with 10% randomly labeled data is presented in Table 2, where the
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Fig. 5. Classification accuracy of LGCN-FF with varying # values on (a) ALOI, BBCsports, BBCnews, MSRC-v1l and MNIST, (b) Wikipedia and Reuters datasets.
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Fig. 6. Training time comparison between LGCN-FF and other GCN-based models.

classification accuracy is used as an evaluation metric. All methods are
run 5 times and we record their average results and standard devia-
tions. We only compute cross-entropy errors L., of the learnable GCN
under the supervision of 10% labeled samples and evaluate the predic-
tion performance with the rest 90% unlabeled data. The experimental
results reveal that LGCN-FF reaches remarkable performance on all
test datasets. Compared with GCN-based methods, the performance im-
provement is more considerable on BBCnews, BBCsports, MSRC-v1 and
Reuters datasets. This observation suggests that the proposed LGCN-FF
has stronger capacity of propagating node attributes among samples
and extracting feature representations on relatively small datasets.
Besides, Fig. 3 demonstrates the performance of all compared methods
with various ratios of labeled samples. The experimental results show
that LGCN-FF performs satisfactorily with relatively small supervision
ratios (e.g., 5% or 10% labeled samples) on all datasets, and other
algorithms generally require more supervision information to achieve
comparable accuracy. The performance improvement is more signifi-
cant on BBCnews, BBCsports and MSRC-v1 datasets. LGCN-FF also gains
competitive accuracy with 5% labeled samples on MNIST dataset, and
outperforms other methods with more labels. This indicates that LGCN-
FF is more in line with the intention of semi-supervised classification.
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In a nutshell, the proposed framework gains superior performance
compared with these state-of-the-art approaches.

Refined Adjacency Matrices: Fig. 4 presents the visualization of
partial average weighted adjacency matrices and adjacency matrices
learned by LGCN-FF. Compared with a direct weighted sum strategy,
the adjacency matrices refined by the DSA function are relatively pure.
It can be seen that some entries in learned adjacency matrices diminish
or disappear, thereby resulting in sparser and more robust graphs.
The learned adjacency matrix makes critical node relationships more
pronounced, which is beneficial for the node embedding learning. The
pleasurable performance of LGCN-FF also favors the superiority of the
proposed framework.

Ablation Studies: In order to verify the effectiveness of the learn-
able GCN component, we also test the classification accuracy of the
Weighted GCN-FF (WGCN-FF) that simply employs an average
weighted adjacency matrix across all views. Besides, the performance
of Adaptive WGCN-FF (AWGCN-FF) is also recorded, where it learns
weights of different adjacency matrices automatically and then directly
utilizes graph convolution operations without further refining. Actu-
ally, LGCN-FF is constructed based on AWGCN-FF, and adds a learnable
DSA function p(-). Results of the ablation study are presented in Table 3.
It is worth mentioning that the performance of GCN fusion in Table 2
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Table 3
Ablation study of the proposed LGCN-FF on all test datasets, where average accuracy
(%) and standard deviation (%) are recorded.

Datasets\Methods WGCN-FF AWGCN-FF LGCN-FF

ALOI 91.8 (1.5) 94.1 (2.3) 97.1 (0.6)
BBCnews 87.8 (1.1) 89.2 (1.3) 91.2 (0.9)
BBCsports 96.5 (0.3) 96.9 (0.3) 98.2 (0.6)
MNIST 88.0 (0.6) 88.8 (0.6) 90.1 (0.7)
Wikipedia 64.1 (1.5) 65.0 (1.6) 67.4 (1.5)
MSRC-v1 83.1 (2.4 86.1 (2.3) 90.4 (2.0)
Reuters 61.4 (0.6) 65.1 (0.4) 67.3 (0.5)

can be regarded as the baseline accuracy. It can be observed that
LGCN-FF succeeds in promoting the performance of the framework,
which suggests the feasibility of the learnable GCN. This may be
attributed to the reason that the learned adjacency matrix explores
more discriminative relationships of nodes, and reduces the impact
of noises generated by different views. Performance comparison also
verifies that p(-) in LGCN-FF further promotes the accuracy of learning
tasks.

Impact of p: Fig. 5 analyzes the impact of f with varying values,
which is a coefficient controlling the sparsity penalty degree of sparse
autoencoders in Eq. (4). Experimental results reveal that the accuracy
of LGCN-FF fluctuates slightly as # changes on all datasets. Nonetheless,
it is observed that the accuracy declines marginally when g decreases
to 0. Namely, a vanilla autoencoder leads to undesired performance.
This indicates that suitable sparseness is beneficial for exploring hidden
representations via sparse autoencoders.

Runtime Comparison: We compare the training time of the pro-
posed LGCN-FF and other GNN-based methods in Fig. 6. Because
LGCN-FF has more modules like feature fusion networks, it requires
more time for training compared with GCN fusion and SSGCN fu-
sion that only consider a simple weighted sum of different graphs.
Nonetheless, the running time of LGCN-FF is still fast and acceptable.
Compared with Co-GCN which also focuses on multi-view learning, it
gains leading performance in terms of training time. Therefore, the
proposed LGCN-FF is an efficient framework addressing multi-view
data.

Convergence Analyses: Fig. 7 shows the convergence of the pro-
posed LGCN-FF. Because there are three loss functions in the frame-
work, we plot logarithm loss values in a single figure for a better
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presentation. For simplicity, we draw curves of £, = ZIU;I £Y. From
all subfigures in Fig. 7, we have the following beneficial observations.
First of all, the loss of L, generally declines dramatically within 10
iterations, because of which the curve of £, tends to be a vertical line
in the beginning of training. Then it converges slightly on most datasets
except ALOI, where the loss value drops considerably around 380
iterations. Second, the loss value of L, starts to decrease significantly
after a period of training (after 100 iterations in most cases), attributed
to the fact that the feature fusion network learns discriminative fusion
features when the latent embeddings learned by sparse autoencoders
are relatively fixed. It is notable that the feature fusion network aims to
seek a trade-off among multiple views, because of which the loss value
may be relatively higher. Third, there is an interesting phenomenon
that the value of £, may bounce marginally. On the contrary, the
loss of £,,., may plunge almost in the same time on some datasets.
This observation is more significant on ALOI (around 380 iterations),
BBCnews (around 320 iterations), BBCsports (around 300 iterations)
and MNIST (around 330 iterations). One reasonable explanation is that
the proposed collaborative training procedure allows the feature fusion
network to refine shared embeddings with promising generalization
capacity via the flexible optimization, thereby leading to further im-
provement on the accuracy of downstream tasks. Although the value of
L ;. may not reach the lowest point, the learned feature fusion is a bet-
ter trade-off among multifarious views. Last but not the least, the value
of £,,.,, which is directly related to the performance of downstream
classification tasks, reaches the lowest point within 500 iterations on all
datasets. The values of £,,., may fluctuate in the late period of training,
owing to the varying features generated by the previous feature fusion
network. Because the classification accuracy of GCN is tightly related
to the input features, the cross entropy loss is sensitive to the quality of
feature fusion. However, £,,., generally converges and it fluctuates in
a small range. It is noted that the fluctuation of £,,., may be amplified
when it is within [0, 1], because we adopt the logarithm of loss values
for better presentation. Actually, the fluctuation is marginal. We can
terminate the network training early when the value of loss L,,., does
not continue to drop for several iterations.

5. Conclusion

In this paper, we proposed an end-to-end neural network framework
dubbed LGCN-FF which solved the multi-view learning problem with
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a learnable GCN and a feature fusion network. In the feature fusion
network, multiple sparse autoencoders and a fully-connected network
were utilized to fuse features from different views and study a unique
underlying representation containing characteristics from all views.
The graph fusion procedure was conducted by the learnable GCN that
adaptively integrated multiple topological graphs from multifarious
views. In addition, a learnable DSA function was proposed to learn a
more robust shared adjacency matrix, which promoted the performance
of LGCN-FF. Finally, the proposed framework divided the optimization
target into several subproblems and jointly learned feature and graph
fusion representations with a multi-step optimization strategy. Experi-
mental results validated the superiority of the proposed framework in
terms of multi-view semi-supervised classification tasks.

In the future, our work can be improved from the following direc-
tions. The proposed model concentrates on undirected graphs, while
node relationships in real-world applications are more likely to be di-
rected graphs. Thus, we can further investigate the GCN-based methods
that process directed graphs. Because there is no natural topological
network for most data in real-world applications, the graph information
adopted in this paper is established via the KNN algorithm. It would
be helpful if a new graph learning framework which automatically
estimates node relations can be developed. In the future, we will devote
more effort to feasible graph fusion learning with multi-view data.
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