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Highlights

• Propose an end-to-end framework for multi-view semi-supervised classification.
• Utilize diffusion map to obtain the geometric structure of the feature space of each view.
• Propose a truncated diffusion correlation function to obtain a reliable sparse graph.
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Abstract

Multi-view learning has received increasing attention in recent years due to its
ability to leverage valuable patterns hidden in heterogeneous data sources. While
existing studies have achieved encouraging results, especially those based on graph
convolutional networks, they are still limited in their ability to fully exploit the
connectivity relationships between samples and are susceptible to noise. To ad-
dress the aforementioned limitation, we propose a framework called geometric
localized graph convolutional network for multi-view semi-supervised classifica-
tion. This framework utilizes a diffusion map to obtain the geometric structure
of the feature space of multiple views and constructs a stable distance matrix that
considers the local connectivity of nodes on the geometric structure. Addition-
ally, we propose a truncated diffusion correlation function that maps the distance
matrix of each view into correlations between samples to obtain a reliable sparse
graph. To fuse the features, we use learnable weights to concatenate the coor-
dinates of the geometric structure. Finally, we obtain a graph embedding of the
fused feature and topology by using graph convolutional networks. Comprehen-
sive experiments demonstrate the superiority of the proposed method over other
state-of-the-art methods.
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1. Introduction

With the continuous development of big data and models, information in the
real world often comes from various information extractors. For instance, an ob-
ject can be perceived through different human senses such as sight, touch, and
smell. This diverse sensory input forms multi-view data. The objective of multi-
view learning is that amalgamate information from various perspectives in order
to enhance practical applications such as computer vision [1] [2] [3], node cluster-
ing [4] [5] [6], and machine learning [7] [8]. Typically, multi-view learning algo-
rithms can achieve satisfactory performance when a sufficient number of labeled
samples are obtained. However, in real-life scenarios, sample labeling can be con-
strained by labor and cost, especially for multi-view data. Therefore, multi-view
semi-supervised classification is a more practical branch that leverages a small
amount of labeled data to guide the prediction of a large amount of unlabeled
data.

Graph-based multi-view semi-supervised classification algorithms have gained
significant attention due to their ability to approximate the manifold structure of
the samples [9]. These algorithms primarily rely on techniques such as random
walk [10] [11], matrix decomposition [12] [13], and graph convolutional networks
(GCNs) [5] [14] to obtain low-dimensional embeddings for downstream tasks.
Among these methods, GCNs [15] have emerged as a powerful tool to extract
more intricate semantic information from the feature space and have demonstrated
success in various scenarios, including graph classification [16] [17] [18], link
prediction [19] [20] [21], and recommendation systems [22] [23] [24]. Although
existing GCN-based methods have achieved promising results on multi-view data,
they continue to encounter the following challenges: 1) Directly calculating sim-
ilarity using data from the original space may be affected by noise, resulting in
suboptimal results [25] [26]; 2) Ignoring the geometric structure hidden in the
feature spaces may lead to underutilization of the connections between samples
[27]; 3) Assigning a fixed number of neighbors to each node may produce incor-
rect connections [28]. To address the challenges mentioned above, we introduce
an effective framework termed Geometric Localized Graph Convolutional Net-
work for Multi-view Semi-supervised Classification (GLGCN), which leverages
diffusion maps to capture the geometric structure of the original features from dif-
ferent views. This allows us to construct a more robust distance metric that is less
sensitive to noisy data, resulting in a more reliable topological connection among
samples. To be more clear, we calculate the state transition matrix for the feature
matrices of each view at a given scale. Then, we utilize eigenvalue decomposition
to obtain the diffusion coordinates. To enable feature propagation across multiple
views, we employ both feature fusion and topology fusion. Feature fusion in-
volves assigning learnable weights to the diffusion coordinates of each view and
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Figure 1: The proposed framework is founded on the use of diffusion maps to
obtain robust distance metrics. Specifically, it performs a scale-specific diffusion
map of the original space to extract the underlying geometric structure. Using this
structure, a truncated diffusion similarity function is employed to obtain sparse
topological connectivity. Finally, a graph convolutional network is utilized to in-
tegrate the fused graphs and features.

then concatenating them together. Topology fusion is achieved by first converting
the diffusion distance matrix into a reliable and sparse adjacency matrix using a
truncated diffusion correlation function.

The architecture of GLGCN is illustrated in Figure 1. The main contributions
of this paper are summarized in the following aspects:

1) The proposed learning framework on graph diffusion fusion projects the
original features onto a low-dimensional space and utilizes the diffusion distance
to construct more robust connections between samples.

2) To obtain a more reliable and sparse topology, we propose a truncated dif-
fusion correlation function, in which a suitable threshold is chosen on the distance
between samples of each view.

3) The proposed method shows superior performance compared to other state-
of-the-art multi-view semi-supervised methods.

This paper is organized as follows. In Section 2, we review related work on
multi-view learning, graph convolutional networks, and multi-view dimensional-
ity reduction. Section 3 elaborates on the proposed GLGCN method. Section 4
presents experimental results, and Section 5 concludes the work.
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2. Related Work

In this section, we will review related work in multi-view learning, graph con-
volutional networks, and multi-view dimensionality reduction.

2.1. Muti-view Learning
Multi-view learning aims to improve the performance of machine learning

tasks in different scenarios by extracting consistency and complementarity among
views. Many studies have addressed multi-view data analysis. Canonical corre-
lation analysis (CCA) and its kernel version are popular examples. Both meth-
ods aim to maximize the correlation between two views for consistent embed-
dings. The kernel version also adapts CCA to non-linear conditions for more
complex real-world applications. Different from CCA, Zhao et al. [29] used non-
negative matrix decomposition to obtain a hierarchical representation from multi-
view data. Since deep neural networks possess strong non-linearities, Chen et al.
[26] used a sparse autoencoder and a minimal threshold shrinkage function to train
a network that considered both feature and topological fusions. Wen et al. [30]
leveraged local geometric information and the unbalanced discriminative power
of incomplete multi-view observations to obtain an effective incomplete multi-
view clustering framework. Jia et al. [31] reduced the redundancy of learned
representations by combining orthogonality and adversarial similarity constraints.
All of these works illustrate that multi-view learning has greater potential than
single-view learning.

2.2. Graph Convolutional Networks
The spectral convolution [32] was defined in the Fourier domain by the eigen-

matrix obtained from the eigenvalue decomposition of the graph Laplacian matrix.
Defferrard et.al [33] used Chebyshev’s formula for approximation, eliminating the
need to compute the eigenvectors of the Laplacian matrix. GCN [15] was built by
restricting the Chebyshev polynomials to the first-order truncation as a way to al-
leviate the problem of overfitting the model in the local structure. Due to the pow-
erful performance of GCN, many variants of it have been proposed and applied to
different fields. Johannes et al. [34] used generalized graph diffusion to remove
the restriction of using only first-order neighbors, alleviating the problem caused
by the noise in the real graph. Li et al. [25] introduced GCN into multi-view
learning by combining Laplace operators. You et al. [35] decomposed feature ag-
gregation and feature transformation in the GCN training process to improve the
learning speed of the model. Yang et al. [36] clustered spatially relevant features
into several region-aware graphs and then explored the interconnections between
regions using GCN. Wu et al. [37] proposed a semi-supervised multi-view con-
volutional network for webpage classification, featuring optimal graph structure
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learning for individual views and integration of multi-view representations using
an inter-view attention scheme. Jiang et al. [38] suggested coalescing differ-
ent views by simultaneously fusing multiple feature projections, similarity maps,
and adaptive weighting to fully preserve the correlation and differentiation among
views. Despite the promising performance of these GCN-based approaches, there
remains a shortage of exploration in establishing stable topologies for multi-view
data which lacks nature topology.

2.3. Multi-view Dimensionality Reduction
Multi-view dimensionality reduction aims to efficiently utilize the existing

data from multiple views to extract a coherent low-dimensional representation of
multi-view data. Zhang et al. [39] proposed a method that used a kernel matching
mechanism based on the Hilbert-Schmidt independence criterion to jointly max-
imize the correlation between different views. This allowed them to map high-
dimensional spaces onto low-dimensional subspaces in a coherent manner. Yuan
et al. [40] enforced predictiveness of the latent space by adaptively combining
the correlations between the latent space and feature space, and maximizing the
correlations between them. Chen et al. [26] obtained a low-dimensional represen-
tation of the data using a sparse autoencoder, which led to a more robust feature
fusion. Wu et al. [28] aimed to obtain an efficient and consistent low-dimensional
embedding across perspectives by incorporating orthogonal constraints into the
optimization objective. By doing so, they constructed an effective multi-view net-
work that could provide insights into the relationships between different views of
the data. These multi-view methods of dimensionality reduction exploit the es-
sential information in the data, reducing the amount of computation required by
the model.

3. The Proposed Method

In this section, we elaborate on the problem formulation and optimization
methodology of diffusion map fusion-based multi-view distance metric learning.
In order to ease the presentation, commonly used notations are given in Table 1.

3.1. Theoretic Motivation
Given a set of data points X = {xi}Ni=1 with xi ∈ RD for any i ∈ [N ], we can

evaluate a kernel matrix K = [Kij]N×N on the sample space X using some ker-

nel function, such as Gaussian kernel with Kij = exp
(

−∥xi−xj∥22
σ2

)
where σ is a

scale parameter for the kernel width. Accordingly, the diffusion-induced similar-
ity matrix is given as S(γ) = D−γKD−γ with D = [Dij]N×N as Dii =

∑N
j=1Kij

for any i ∈ [N ]. Consequently, we then construct a discrete-time Markov chain
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Table 1: Commonly used notations with their descriptions.

Notations Descriptions

{X(v) ∈ RN×Dv}Vv=1 Data with V views, N samples and Dv features
Y, Ŷ Real label and predictive label of multi-view data
X = [X(1) ∥ · · · ∥ X(V )] Data matrix of multi-view feature concatenation
K, P, D Kernel matrix, transition matrix, degree matrix
Dk(·, ·), ψk(·) Diffusion distance, diffusion map at time step k
k, σ, τ , δ Hyperparameters in the proposed model
{Θ(l)}Ll=1, α Learnable parameters in the network
Φ(·) Activation function in the network

M on X with the transition probability matrix P(α) (simply called P) as the
normalized kernel matrix P(γ) = D−1S(γ) where D is a diagonal matrix with
Dii =

∑N
j=1 S

(γ)
ij for any i ∈ [N ]. Here, p(xi,xj) = P

(γ)
ij represents the one-step

probability from state xi to state xj , while Pk gives the k-step transition matrix.
Generally, denote p(xj, k|xi) as the probability from xi to xj within k steps. Ac-
cordingly, the diffusion distance between xi and xj at time step k is defined as

Dk(xi,xj) =
∑
x

(p(x, k|xi)− p(x, k|xj))
2

ϕ0(x)
, (1)

where ϕ0(x) is the stationary distribution of the Markov chain M given by the
eigenvector of the largest eigenvalue of P(γ). The diffusion distance is calculated
based on the local information of each node, meaning that each node only con-
siders the information of its neighboring nodes. Therefore, the effect of changes
in some nodes or edges on other nodes is limited, and this localized smoothness
makes the calculation of the diffusion distance less affected by local perturbation
on the graph.

Assume that P(γ) has N eigenvalues {λi}Ni=1 in descending order and the cor-
responding eigenvectors {ψi}Ni=1, then the diffusion distance is equivalent to

D2
k(xi,xj) =

∑
l

λ2kl (ψl(xi)− ψl(xj))
2 =

∥∥ψk(xi)−ψk(xj)
∥∥2
2
, (2)

where ψk(x) = [λk1ψ1(x), · · · , λkdψd(x)] ∈ Rd is the diffusion map with d =

max {l ∈ N, |λl|k > δ |λ1|k} for a low-dimensional representation, where δ is pre-
set to a value within the interval (0, 1).

3.2. Problem Formulation
Given a multi-view dataset {X(v) ∈ RN×Dv}Vv=1 of n labels Y = {yi}ni=1 with

n << N , the diffusion map time step k, diffusion map scale σ and hyperparameter
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τ and δ, we can obtain the kernel matrices {K(v)}Vv=1 for different views. We then
normalize these kernel matrices to obtain a set of transition matrices {P(v)}Vv=1

of multi-view data. Consequently, we can construct the diffusion distance D(v)
k

and diffusion map ψ(v)
k of the v-view data X(v). The proposed model attempts to

address the following two considerations:
1) By treating data from different views differently and using alternative map

scales, we can obtain more accurate distance metrics.
2) By measuring the distance distribution of node pairs across the sample

space, we avoid assigning neighborhoods to pairs of nodes that are far apart.
Towards the goal of taking into account the considerations, the multi-view

learning problem for semi-supervised classification is written as training an L-
layer graph convolutional network,

H(l) = σ
(
ÂH(l−1)Θ(l)

)
, (3)

where Â = D− 1
2

[∑V
v=1A

(v)
]
D− 1

2 is a normalized diffusion affinity matrix,

where the adjacency matrix A(v) is defined as A(v) = f (v)(D(v)
k ) and the diag-

onal matrix D is defined as Dii =
∑N

j=1[
∑V

v=1A
(v)]ij for any i ∈ [N ]. Here,

the original input is the concatenation of multi-view diffusion maps H(0) .= X =

α1ψ
(1)
k (X(1)) ∥ · · · ∥ αVψ

(V )
k (XV ) where ψ(v)

k (X(v)) ∈ RN×D is the diffusion
map from the v-th view data at time step k, and α = [α1; · · · ;αV ] is a learnable
weight vector constrained in Sα = {α ∈ RV |α⊤1 = 1,α ≥ 0}. The truncated
diffusion correlation function for the v-th view is denoted as f v(·), and we re-
quire it to be equipped with the following properties: First, it should be strictly
monotonically decreasing and bounded, mapping the distance to the range [0, 1];
Second, no connection relation between sample pairs outside the given distance
range should be constructed. To satisfy the above considerations, the truncated
diffusion correlation function for v-th view can be written as

f(D(v)
k ) = ReLU(1− τD(v)

k ), (4)

where τ ∈ (0, 1) is a hyperparameter and ReLU(·) is a nonlinear activation func-
tion. The GCN forward propagation equation is obtained by bringing Equation 4
into Equation 3 as

H(l) = σ

(
D− 1

2

[
V∑

v=1

ReLU(1− τD(v)
k )

]
D− 1

2H(l−1)Θ(l)

)
. (5)

3.3. Optimization Methodology
In this subsection, since the diffusion map fusion and the feature fusion can be

computed and saved in advance, we only need to optimize the cross-entropy loss to
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obtain the final graph representation. Accordingly, the output layer H(L) ∈ RN×c

serves as the predicted label matrix Ŷ. Naturally, it is expected to have a minimum
difference between the real label Y and the predicted label Ŷ, evaluated by their
cross-entropy loss

Lcla = −
n∑

i=1

c∑
j=1

Yij ln(H
(L)
ij ), (6)

where n is the number of labeled samples used for training. The procedure for
GLGCN is outlined in Algorithm 1.

Algorithm 1 Geometric Localized Graph Convolutional Network for Multi-View
Semi-Supervised Classification (GLGCN)

Require: Multi-view data {X(v)}Vv=1 with labels {yi}ni=1, diffusion map scale σ,
time step k, hyperparameters τ and δ, network layer number L.

Ensure: Predictive labels {ŷi}Ni=n+1.
▷ Obtain transition matrices, diffusion distances and diffusion maps ◁

1: for v = 1 → V do
2: Calculate the kernel matrix K(v) of the v-th view data;
3: Compute the transition matrix P(v) of the v-th view data using K(v);
4: Construct diffusion distance D(v)

k and diffusion map ψ(v)
k (X(v));

5: end for
6: Initialize graph convolution as Â = D− 1

2

[∑V
v=1 ReLU(1− τD(v)

k )
]
D− 1

2 ,

and input data as H(0) = [α1ψ
(1)
k (X(1)) ∥ · · · ∥ αVψ

(V )
k (XV )];

▷ Label propagation ◁
7: Initialize network parameters {Θ(l)}Ll=1 and view weight α;
8: while Do not converge or reach the maximum iteration number do
9: Update network layers {H(l)}Ll=1 using Eq. (5); // Forward propagation.

10: Update network parameters {Θ(l)}Ll=1 and view weight α using the gradi-
ents of the loss Lcla; // Back propagation.

11: end while
12: Compute labels by ŷi = argmax

j
H

(L)
ij for any i in {n+ 1, · · · , N};

13: Return the predictive label set {ŷi}Ni=n+1.

4. Experiments

4.1. Dataset Descriptions
In this subsection, we give a brief description of eight real-world datasets con-

taining different kinds of data types in Table 2. These datasets are described as
follows:
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• ALOI1: The dataset includes images captured under varied light conditions
or rotation angles. Each image is associated with four feature sources, in-
cluding 64-D RGB color histogram, 64-D HSV color histogram, 77-D color
similarities features, and 13-D Haralick features.

• Animals2: This dataset contains 10,158 images categorized into 50 classes.
Each image is accompanied by two extracted visual features: 4,096-D DE-
CAF features and 4,096-D VGG19 features.

• Caltech1023: It is a dataset consisting of 9,144 pictures grouped into 102
categories, including 48-D Gabor features, 49-D WM features, 254-D GEN-
TRIST features, 1,984-D HOG features, 512-D GIST features, and 928-D
LBP features.

• GRAZ024: This widely used object dataset comprises images from four dif-
ferent classes and includes six common features: 512-D GIST features, 225-
D WT features, 256-D LBP features, 500-D SIFT features, 500-D SURF
features, and 680-D PHOG features.

• Reuters5: This dataset consists of 18,758 documents in 6 categories, with
multi-view information created from different languages, including English,
French, German, Italian, and Spanish.

• OutScene6: This image dataset contains 2,688 instances categorized into
eight classes. It includes 512-D GIST features, 59-D LBP features, 864-D
HOG features, and 254-D GENT features.

• Scene157: This scene image dataset comprises 4,485 images into 15 cate-
gories, with three views for each image. The feature dimensions for each
perspective are 1,800, 1,180, and 1,240 respectively.

• Youtube8: This video dataset comprises 2,000 instances in 10 classes, with
six views of both visual and audio features. The views include 2,000-D
cuboids histogram, 1,024-D motion estimate histogram, 64-D HOG fea-
tures, 512-D MFCC features, 64-D volume streams, and 647-D spectrogram
streams.

1http://aloi.science.uva.nl
2http://attributes.kyb.tuebingen.mpg.de
3http://www.vision.caltech.edu/Image Datasets/Caltech102/
4http://www.emt.tugraz.at/˜pinz/data/GRAZ 02
5https://archive.ics.uci.edu/ml/datasets.html
6https://gitee.com/zhangfk/multi-view-dataset
7https://figshare.com/articles/15-Scene Image Dataset/7007177
8http://archive.ics.uci.edu/ml/datasets
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Table 2: A brief description of the tested datasets.

Datasets # Samples # Features # Views # Classes # Data types

GRAZ02 1,476 512 / 32 / 256 / 500 / 500 / 680 6 4 Object image
ALOI 1,079 64 / 64 / 77 / 13 4 10 Object image

Youtube 2,000 2,000 / 1,024 / 64 / 512 / 64 / 647 6 10 Object image
Animals 10,158 4,096 / 4,096 2 50 Animal image

Caltech102 9,144 48 / 40 / 254 / 1,984 / 512 / 98 6 102 Digit image
Scene15 4,485 1,800 / 1,180 / 1,240 3 15 Object image
OutScene 2,688 512 / 432 / 256 / 48 4 8 Object image
Reuters 18,758 21,531 / 24,892 / 34,251 / 15,506 / 11,574 5 6 Textual document

4.2. Compared Methods
We compare the performance of the proposed framework with the state-of-the-

art models, including AMGL [41], MVAR [42], HLR-M2VS [43], WREG [44],
GCN-Fusion, Co-GCN [25], DSRL [45], LGCN-FF [26], and IMvGCN [28]. A
description of these methods is given below.

• AMGL: It allows for the learning of optimal weights for each view without
introducing any additional parameters.

• MVAR: It utilizes the ℓ2,1 norm to compute the regression loss for each
independent view. It then constructs the objective function by taking the
weighted sum of all the regression losses.

• HLR-M2VS: It constructs a unified tensor space to jointly explore the re-
lationships between multiple views through a local geometric structure. It
uses low-level tensor regularization to ensure agreement across all views.

• WREG: It maps the concatenation of raw features to a discriminative low-
dimensional subspace to integrate multi-view data. The features from dif-
ferent views are adaptively assigned to optimal weights, thus preserving
both consistent and complementary information simultaneously.

• GCN-Fusion: It modifies the initial version of GCN which is unable to han-
dle multi-view data directly. In order to address this limitation, it performs
graph convolution by averaging the adjacency matrices and concatenating
the feature matrices.

• Co-GCN: It introduces GCN into multi-view learning and obtains multi-
view spectral information by adaptively combining Laplacian matrices.

• DSRL: It uses a deep sparse regularizer learning model to adaptively learn
data-driven sparse regularizers for multi-view clustering and semi-supervised
classification.
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• LGCN-FF: It integrates sparse autoencoders and a learnable GCN to collec-
tively learn comprehensive representations of multiple features and graphs.

• IMvGCN: It introduces multi-view reconstruction errors paired with Lapla-
cian embeddings to capture independence and consistency.

4.3. Parameter Settings
Most of the compared algorithms in our study are implemented with their de-

fault parameters. In particular, certain parameter settings for the compared meth-
ods have been empirically determined to yield better performance, as follows:

• AMGL: It is a parameter-free framework, so we do not set any parameters
for it.

• MVAR: We tune the trade-off weight for each view as λ = 1000, and fix the
redistribution parameter r over views as 2.

• WREG: We select the trade-off λ in {1e−3, 1e−2, 1e−1, 1e0, 1e1, 1e2, 1e3}
and the termination parameter ϵ = 0.001.

• HLR-M2VS: We select the weighted factors as λ1 = 0.2 and λ2 = 0.4. The
maximum number of iterations is set to be 100.

• GCN-Fusion: We use the GCN-fusion method with a varying number of
neighbors selected from {15, 20, 30, 50}.

• Co-GCN: The settings for the convolutional layers and number of neighbors
are the same as those used in GCN-Fusion.

• DSRL: We set the block number as 10 and the initialization for the param-
eterized activation function is tuned as w1 = w2 = 1, b1 = 1 and b2 = 2.

• LGCN-FF: The default setting for the hyperparameter controlling the spar-
sity penalty degree is β = 1.

• IMvGCN: The default setting for hyperparameters λ = 0.5 and α = 1e−5.

For the GLGCN method, when handling data with feature dimensions ex-
ceeding 10,000, we specify the kernel matrix parameter of the diffusion map as
σ = 0.5. The dimensions of the embedding space are determined using δ = 0.2
and k = 1. Conversely, for datasets with lower feature dimensions, the kernel
matrix parameter of the diffusion map is set to σ = 1. In this case, δ = 0.01
and k = 1 are employed to ascertain the dimensionality of the embedding space.
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A common threshold of τ = 0.001 is used to sparsify the adjacency matrix for
all datasets. To learn the graph representation, we employ a two-layer GCN with
the ReLU activation function and optimize the model parameters using the Adam
optimizer with a learning rate of 0.01 and a weight decay of 5e−8. The proposed
framework is implemented using the PyTorch platform and runs on a computer
featuring an AMD R9-5900X CPU, Nvidia RTX 3060 GPU, and 48GB of RAM.

4.4. Semi-Supervised Classification
In this subsection, we compare the performance of different methods by train-

ing each method with 10% of the available data and then testing them with the
remaining 90%. To ensure the reliability of the results, we repeat each method
five times and record their means and standard deviations. We utilize accuracy
and F1-score as the criteria for evaluation, as shown in Table 3. Based on the
experimental results, we have the following observations.

Table 3: Classifiation results (mean% and standard deviation%) of all compared
semi-supervised classification methods with 10% labeled samples as supervision,
where the best results are highlighted in bold and the second best results are high-
lighted in underlined.

Dataset Metrics AMGL MVAR WREG HLR-M2V S GCN-Fusion Co-GCN DSRL LGCN-FF IMvGCN GLGCN

ALOI
ACC 56.81 (1.43) 30.78 (10.67) 90.19 (1.33) 89.73 (0.78) 90.27 (1.74) 79.97 (1.98) 90.91 (0.85) 95.67 (0.65) 77.70 (3.80) 97.25 (0.42)

F1 57.71 (3.02) 23.94 (10.67) 90.70 (1.21) 90.14 (0.75) 90.71 (0.74) 79.13 (2.44) 91.00 (0.79) 95.64 (0.13) 76.10 (5.10) 97.37 (0.01)

Animals
ACC 70.96 (0.49) 81.51 (0.47) 83.51 (0.34) 72.73 (0.53) 77.38 (0.57) 80.20 (1.22) 80.00 (0.50) 54.98 (4.78) 81.91 (0.08) 83.25 (0.19)

F1 65.69 (0.66) 76.69 (1.04) 78.65 (0.49) 68.05 (0.90) 74.03 (0.72) 73.74 (1.56) 73.62 (1.14) 40.20 (6.13) 75.75 (0.17) 78.37 (0.31)

Caltech102
ACC 46.72 (0.47) 46.13 (0.90) 46.93 (0.55) 48.07 (0.44) 46.14 (0.62) 37.98 (8.71) 52.88 (0.56) 40.16 (0.79) 47.60 (0.10) 53.59 (0.09)

F1 30.33 (0.66) 29.02 (0.95) 28.53 (0.82) 31.18 (0.74) 27.13 (0.24) 20.91 (6.40) 34.57(1.24) 33.42 (0.46) 24.30 (0.10) 34.21 (0.27)

GRAZ02
ACC 54.95 (1.00) 52.46 (1.77) 43.40 (3.52) 54.69 (2.61) 55.67 (6.20) 40.54 (2.56) 48.11 (1.04) 49.62 (2.50) 56.19 (0.49) 61.97 (0.52)

F1 55.60 (1.05) 52.94 (1.98) 43.55 (3.58) 56.32 (1.78) 58.68 (0.91) 38.94 (1.50) 48.64 (1.05) 43.67 (0.96) 55.00 (0.55) 61.02 (0.39)

Scene15
ACC 68.41 (0.66) 44.25 (9.65) 52.32 (1.95) 67.40 (1.34) 72.69 (0.66) 58.67 (1.09) 61.75 (0.85) 50.05 (4.38) 65.56 (3.05) 73.47 (0.26)

F1 67.30 (0.70) 45.83 (8.41) 52.58 (1.99) 67.3 (0.86) 72.40 (0.41) 56.69 (0.89) 60.54 (0.82) 42.32 (5.71) 62.03 (2.93) 72.41 (0.29)

Youtube
ACC 49.27 (1.00) 22.51 (2.71) 36.72 (0.39) 55.50 (0.00) 55.89 (1.34) 29.28 (0.27) 44.74 (0.80) 47.30 (1.84) 47.20 (0.60) 59.30 (0.48)

F1 48.83 (1.02) 20.39 (2.04) 35.91 (0.92) 51.64 (2.05) 55.92 (1.20) 21.53 (1.28) 42.11 (2.94) 42.32 (5.71) 45.70 (0.60) 59.00 (0.63)

OutScene
ACC 71.16 (0.98) 46.10 (11.26) 57.63 (1.80) 73.33 (1.25) 75.23 (0.73) 70.96 (2.05) 44.74 (0.80) 61.06 (11.03) 77.20 (0.72) 77.36 (0.29)

F1 72.30 (0.76) 50.81 (11.09) 58.61 (1.59) 75.23 (1.21) 75.62 (0.68) 71.31 (2.02) 42.11 (2.94) 57.94 (15.85) 77.44 (0.78) 77.37 (0.31)

Reuters
ACC OM 64.60 (0.30) OM OM OM 60.20 (0.60) OM 67.30 (0.50) 65.96 (1.98) 71.50 (0.99)

F1 OM 60.72 (0.34) OM OM OM 56.39 (1.23) OM 64.73 (1.18) 61.03 (1.70) 65.82 (1.46)

First of all, the proposed model exhibits satisfactory performance on most
datasets, outperforming other baseline methods. Significantly, our model demon-
strates notable improvements on the GRAZ02, Youtube, and Reuters datasets,
surpassing the second-highest performing algorithm by 6.3%, 3.4%, and 4.2%,
respectively. These observations validate the effectiveness of the proposed frame-
work.
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Figure 2 displays the changes in training loss and test accuracy as the model
trains on the six datasets. From the figure, it is evident that the loss and accuracy
of all datasets converge after 200 epochs, with the accuracy gradually increasing
as the loss decreases. This also demonstrates the effectiveness of the proposed
model, which requires only a few rounds of training to achieve both high classifi-
cation accuracy and low loss.

(b) Animals (c) Caltech102

(d) GRAZ02

(a) ALOI

(e) Scene15 (f) Youtube

Figure 2: Convergence curves of training loss values and test accuracy with
GLGCN on six datasets.

Table 4 shows the dimensions of the original data and the reduced dimen-
sions after applying the diffusion map. These results confirm that we obtain lower
dimensional features with a global structure by reducing the dimensionality of
the data at a given scale. To summarize, the proposed model can learn a low-
dimensional representation of the original data and achieve satisfactory perfor-
mance with reliable convergence.

Additionally, the performance of each compared algorithm at different labeled
sample ratios is illustrated in Figure 3. Based on the figure, it shows that GLGCN
is better suitable for semi-supervised classification tasks as it achieves satisfactory
performance even with a low sample label rate. In comparison, other methods re-
quire significantly more supervised information to match its level of performance.

To better showcase the performance of the proposed model, Figure 4 presents
the visualization results obtained by each algorithm using t-SNE on the ALOI
dataset. The figure demonstrates that GLGCN assigns more accurate class labels,
and it has more distinct inter-class demarcation and better inter-class separability.
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Table 4: Comparison of original feature dimensions and feature dimensions after
diffusion map.

Dataset Original Dimensions Dimensions after Diffusion Map

ALOI 64 / 64 / 77 / 13 64 / 56 / 4 / 7
Animals 4,096 / 4,096 1,451 / 649

Caltech102 48 / 40 / 254 / 1,984 / 512 / 928 29 / 26 / 121 / 226 / 126 / 116
GRAZ02 512 / 32 / 256 / 500 / 680 61 / 32 / 21 / 126 / 500 / 212
Scene15 1,800 / 1,180 / 1,240 581 / 42 / 492
Youtube 2,000 / 1,024 / 64 / 512 / 64 / 647 414 / 247 / 45 / 311 / 63 / 346

OutScene 512 / 432 / 256 / 48 70 / 38 / 37 / 48
Reuters 21,531 / 24,892 / 34,251 / 15,506 / 11,574 15 / 12 / 14 / 12 / 11

In a nutshell, our proposed model yields more accurate results with less supervi-
sion and is able to more effectively distinguish between different classes of sample
clusters.
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AMGL
MVAR

WREG
HLR-M²VS

GCN-Fusion
Co-GCN

DSRL
LGCN-FF

IMvGCN
GLGCN

Figure 3: The various performance (Accuracy %) of all compared methods on six
test datasets. The ratio of labeled samples ranges in {0.05, 0.10, ..., 0.50}.

4.5. Feature Missing Analysis
To demonstrate the stability of our model, we apply a random feature mask

to the multi-view data. This may lead to the possibility of connecting samples
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(a) AMGL (b) MVAR (c) WREG (d) HLR-M²VS (e) GCN-Fusion

(f) Co-GCN (g) DSRL (h) LGCN-FF (j) GLGCN(i) IMvGCN

Figure 4: T-SNE visualization of semi-supervised classification results from all
compared methods on the dataset ALOI.

that are not originally close to each other. Given that the features of the datasets
are initially complete, we apply a masking process to obtain an incomplete fea-
ture matrix as follows: randomly generate a matrix of the same size as the feature
matrix, containing elements of 0 or 1. The final incomplete matrix is obtained
by performing a Hadamard product between the masked matrix and the feature
matrix, where the masking rate is determined by the proportion of zeros in the
masked matrix to the total number of elements in the entire matrix. Figure 5 shows
the performance of the GCN-based algorithm as the size of the masking rate in-
creases. It can be observed that the performance of all algorithms decreases as the
feature masking rate increases, but GLGCN shows slower performance degrada-
tion compared to other algorithms. Additionally, the proposed framework is able
to withstand a larger masking rate while achieving comparable performance to
other algorithms. This further demonstrates the effectiveness of the topological
connection constructed using diffusion distance.

4.6. Ablation Study
We also test the effectiveness of constructing adjacency matrices by diffu-

sion map and the learnable weights. The results of the ablation experiments are
shown in Table 5. We can observe that the best results are achieved by using both
the diffusion map and the learnable weights. Moreover, using only one of these
techniques yields better results than not using either of them. Based on the obser-
vation, we can conclude that both two components of GLGCN are beneficial for
improving the performance of semi-supervised classification tasks.

4.7. Parameter Sensitivity Analysis
Figure 6 demonstrates how the model performance is affected by varying the

values of σ and τ across different datasets. This is achieved by adjusting the
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Figure 5: The various performance (Accuracy %) of deep network-based methods
on ALOI and Youtube. The masking rate ranges in {0.0, 0.1, · · · , 0.9}.

Table 5: Ablation study of the proposed GLGCN on all test datasets.

Dataset ψ
(v)
k (·) α ACC Dataset ψ

(v)
k (·) α ACC

ALOI

90.11

GRAZ02

55.98
✓ 93.79 ✓ 60.72

✓ 94.42 ✓ 60.95
✓ ✓ 97.25 ✓ ✓ 61.97

Animals

76.15

Scene15

69.40
✓ 78.82 ✓ 72.62

✓ 82.03 ✓ 72.99
✓ ✓ 83.25 ✓ ✓ 73.47

Caltech102

47.73

Youtube

53.11
✓ 48.09 ✓ 56.66

✓ 52.51 ✓ 57.57
✓ ✓ 53.59 ✓ ✓ 59.30

Reuters

-

OutScene

75.23
✓ - ✓ 75.99

✓ 65.18 ✓ 75.94
✓ ✓ 71.50 ✓ ✓ 77.36
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parameters of the Gaussian kernel function, which alters the similarity of the orig-
inal samples after being mapped by the kernel function, and the parameters of the
truncated diffusion correlation function, which modifies the distance threshold re-
quired to establish connections between the samples. The experimental results
reveal that, for these datasets, the proposed model tends to perform better with
smaller values of σ and τ . Remarkably, there is not much variation in the perfor-
mance of the model for the dataset ALOI when these two parameters are modified.
This could be attributed to the inherent perfect geometric structure of the dataset,
which remains relatively unchanged after diffusion map at various scales, and the
stability of sample distances.

（a）ALOI （b）Animals （c）Caltech102

（d）GRAZ02 （e）Scene15 （f）Youtube

Figure 6: Parameter sensitivity (Accuracy%) of the proposed method w.r.t. σ and
τ on six datasets.

It can be observed from Figure 7 that the values of threshold parameter δ and
time step k have a significant impact on the accuracy of the model. The opti-
mal performance is achieved when setting k = 1 and δ = 0.01. This suggests
that the proposed method is sensitive to the choice of these two parameters, and
parameter fine-tuning is necessary to achieve the best results. Generally, the per-
formance gradually decreases as k increases, while it improves with decreasing
δ at a fixed k value. Notably, when k exceeds 3, increasing δ has little effect on
the performance. It is also interesting to observe that the performance of the Cal-
tech102 dataset is primarily affected by changes in δ, while variations in the k
value have minimal effect. One possible explanation for this is that when keeping
δ fixed, the neighborhoods constructed based on diffusion distances do not change
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（a）ALOI （b）Animals （c）Caltech102

（e）GRAZ02 （f）Scene15 （g）Youtube

Figure 7: Parameter sensitivity (Accuracy%) of the proposed method w.r.t. γ and
k on six datasets.

significantly regardless of how k is adjusted, indicating that the selected scale σ
sufficiently captures the underlying geometric structure of the dataset to create
stable adjacency matrices.

5. Conclusion

This paper proposed a framework for learning robust multi-view distance met-
rics by considering the limitations of similarity measures constructed in the origi-
nal feature space, which may ignore noise in the features and the underlying geo-
metric structure. To accomplish this goal, we leveraged diffusion maps to capture
a more precise global structure in feature space and preserved the nonlinear dis-
tance relationships between the data points. In constructing the distance relation-
ships between samples, the proposed method did not rely on node-level distances
to determine neighborhoods. Instead, we employed a perspective-level approach
to determine which distances were valid for the entire perspective and encoded
these relationships as adjacency matrix weights. To perform feature fusion, we
applied learnable weights to the features of each perspective prior to concatenat-
ing them. The experimental results on benchmark datasets clearly demonstrated
the superior performance of our proposed framework compared to other state-of-
the-art methods for semi-supervised classification tasks.
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There are several promising topics in the realm of multi-view learning and
GCNs that have yet to be explored. Many existing studies operate under the as-
sumption of reliable original data and overlook the significance of local relation-
ships among samples, particularly in the context of GCN-based models. In the fu-
ture, our objective is to advance the topological construction process of GLGCN
by incorporating downstream tasks, thereby constructing graphs that are better
tailored to the specific requirements of those tasks.
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