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Generative Essential Graph Convolutional Network
for Multi-view Semi-supervised Classification

Jielong Lu, Zhihao Wu, Luying Zhong, Zhaoliang Chen, Hong Zhao, Shiping Wang

Abstract—Multi-view learning is a promising research field
that aims to enhance learning performance by integrating in-
formation from diverse data perspectives. Due to the increasing
interest in graph neural networks, researchers have gradually
incorporated various graph models into multi-view learning.
Despite significant progress, current methods face challenges in
extracting information from multiple graphs while simultane-
ously accommodating specific downstream tasks. Additionally,
the lack of a subsequent refinement process for the learned graph
leads to the incorporation of noise. To address the aforementioned
issues, we propose a method named generative essential graph
convolutional network for multi-view semi-supervised classifi-
cation. Our approach integrates the extraction of multi-graph
consistency and complementarity, graph refinement, and classi-
fication tasks within a comprehensive optimization framework.
This is accomplished by extracting a consistent graph from the
shared representation, taking into account the complementarity
of the original topologies. The learned graph is then optimized
through downstream-specific tasks. Finally, we employ a graph
convolutional network with a learnable threshold shrinkage
function to acquire the graph embedding. Experimental results
on benchmark datasets demonstrate the effectiveness of our
approach.

Index Terms—Muti-view learning, graph convolutional net-
work, learnable graph, learnable threshold shrinkage activation.

I. INTRODUCTION

W ITH the rapid development of multimedia technology,
acquiring multiple views of an object has become more

accessible across various fields. For instance, news articles
may be covered by multiple news outlets, and an image can be
analyzed using different feature extractors. These different per-
spectives or representations of data are collectively referred to
as multi-view data. Compared to single-view data, multi-view
data provides more comprehensive feature information [1].
Building on these datasets, a learning paradigm known as
multi-view learning has emerged. Multi-view learning has

This work is in part supported by the National Natural Science Foundation
of China under Grant U21A20472 and 62276065, and the National Key
Research and Development Plan of China under Grant 2021YFB3600503.
(Corresponding author: Shiping Wang.)

Jielong Lu, Zhihao Wu, Luying Zhong, Zhaoliang Chen and Ship-
ing Wang are with the College of Computer and Data Science, Fuzhou
University, Fuzhou 350116, China and also with the Key Labora-
tory of Intelligent Metro, Fujian Province University, Fuzhou 350108,
China (email: jielonglu2022@163.com, zhihaowu1999@gmail.com, luy-
ingzhongfzu@163.com, chenzl23@outlook.com, shipingwangphd@163.com).

Zhao Hong is with the School of Computer Science, Minnan Normal
University, Zhangzhou, Fujian, 363000, China, and with the Key Laboratory
of Data Science and Intelligence Application, Minnan Normal University,
Zhangzhou, Fujian, 363000, China (e-mail: hongzhaocn@163.com).

demonstrated remarkable success in various applications, in-
cluding data mining [2], [3], [4], [5], [6], machine learning
[7], [8], [9], [10], [11], and computer vision [12], [13], [14].

In real-world scenarios, collecting sufficient labeled data,
especially for multi-view data, is often challenging due to
the need for expertise and considerable time investment.
Therefore, it is essential to effectively leverage unlabeled data
in multi-view learning. Extensive research has demonstrated
that multi-view semi-supervised classification methods can
effectively utilize a small amount of labeled data to guide
the prediction of a larger amount of unlabeled data [15], [16],
[17], [18]. In recent years, graphs have emerged as a powerful
tool for analyzing non-Euclidean data [19]. For example,
graphs have been utilized to model the intricate relationships
among individuals in social networks and the interaction forces
between molecules. This trend has played a crucial role in
advancing the development of graph-based methods. Among
numerous multi-view semi-supervised algorithms, graph-based
techniques have garnered significant attention due to their abil-
ity to construct a graph where the nodes represent labeled and
unlabeled examples and propagate label information through
the edges. However, numerous graph-based multi-view semi-
classification methods are shallow models that face challenges
in effectively integrate the structural information of the graph
with the intrinsic characteristics of the data. Consequently,
there is an increasing anticipation of harnessing the potential
of deep learning to attain more favorable outcomes.

Graph Convolutional Network (GCN) [20] has garnered
considerable attention due to its ability to encode both graph
structure and sample features as potential representations. This
unique property has led to significant improvements in various
applications, including link prediction [21], [22], [23], action
recognition [24], [25], [26] and recommendation systems [27],
[28], [29]. Many researchers have introduced GCNs into the
multi-view domain by mining hidden connections on multi-
view data [30]. However, the majority of constructed multi-
view graphs often neglect downstream-specific tasks while
seeking consistent and complementary connections among
views, leading to underutilization of feature information. Fur-
thermore, there is a notable absence of a refinement process
for the constructed graphs, which allows the noisy connections
to impact the performance of GCNs.

To address the aforementioned challenges, we propose a
framework named Generative Essential Graph Convolutional
Network (GEGCN). This framework integrates the process
of constructing the graph with the classification task while
simultaneously extracting topological consistency and com-
plementarity across multiple views. Specifically, the generator
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Fig. 1. Overview of the proposed GEGCN framework which includes: a) Shared Representation Learning Module; b) Graph Learning Module; c) Denoised
GCN Module. The sample pairs from Z represent a set of tuples, each consisting of any two samples that are in the shared representation matrix Z, such as
{(z1, z1), (z1, z2), ..., (zn, zn)}.

network utilizes the shared representations obtained from
multiple views to learn the graph and incorporate information
from downstream tasks. In contrast, discriminator networks
leverage geometric priors in the original space, considering
the unique connectivity specific to each graph. Additionally,
we introduce a denoised GCN that incorporates an adaptive
threshold shrinkage function. This function plays a crucial role
in the process of graph learning by selectively retaining strong
connections while disregarding unimportant ones in the graph.
As a result, the technique learns refined graph and extracts
robust graph embeddings.

In terms of the training approach, we employ a strategy
where each submodule optimizes its parameters independently.
The framework is demonstrated in Fig. 1. The main contribu-
tions of this paper are summarized as follows:

• Propose a framework that extracts both the consistency
and complementarity of multi-view topologies while link-
ing them to downstream tasks.

• Develop a denoised GCN that contains a learnable thresh-
old shrinkage function to adaptively filter the noise con-
tained in the learned graph.

• Substantial experiments on benchmark datasets show that
the proposed framework achieves superior performance
compared to other state-of-the-art algorithms.

II. RELATED WORK

In this section, a comprehensive review of the literature
related to our study is provided. Firstly, an overview of graph
convolutional networks is presented, followed by a detailed
discussion of different approaches to multi-view learning.
Lastly, the primary techniques used for constructing multi-
view graphs are outlined.

A. Graph Convolutional Network

Graph Convolutional Network (GCN) was proposed by Kipf
and Welling [20] as a powerful tool for analyzing graph data.
The propagation rule of GCN is shown below:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W(l)), (1)

where H(l) and H(l+1) represent the input and output of the
l-th layer graph convolution, Ã = A + I is the adjacency
matrix with added self-loops, D̃ii =

∑
j Ãij , W(l) is the

learnable parameter of the l-th layer, and σ(·) is the activation
function. Here, I represents the identity matrix. Due to the
effectiveness of GCN, many variants and extensions have
been proposed, which have shown encouraging performance
[31], [32]. Peng et al. [33] utilized a combination of graph
convolutional networks and matrix decomposition to capture
nonlinear interactions and leveraged the similarity of mea-
surements. Wang et al. [34] dissected the steps of linear
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GCN from the perspective of continuous graph diffusion, and
analyzed why additional propagation steps did not benefit
linear GCN, and proposed decoupling graph convolution to
separate terminal time and feature propagation. Zhong et al.
[35] proposed a comparative learning framework that jointly
utilized topological graph and adaptive graph with feature
information, and constructed a self-supervised mechanism to
enrich the limited label information. Chen et al. [36] utilized
two simple and effective techniques: initial residuals and iden-
tity mapping, and provided theoretical and empirical evidence
that these two techniques can effectively mitigate the problem
of over-smoothing. While existing GCN models demonstrate
commendable performance on graph-structured data, certain
limitations arise when dealing with data that lacks natural
topology.

B. Multi-view Learning

Multi-view learning has demonstrated remarkable effec-
tiveness in diverse practical domains. Processing multi-view
data typically involves exploring the consistency and com-
plementarity between diverse views to extract valuable in-
formation. Sun et al. [37] introduced a novel approach to
leverage different views with consistent categorical margins,
presenting a generalized form of a multi-view maximum
entropy discriminant solution instantiated under a specific a
priori formulation. Chao et al. [38] proposed a method for
multi-view classification that aligned data from different views
into a shared subspace while incorporating original features
to enhance consensus and complementarity. Peng et al. [39]
proposed a novel objective function to simultaneously obtain
geometric consistency and clustering assignment consistency
in the data, thereby facilitating the direct learning of almost
any parameter from the data. Chao et al. [17] employed geo-
metric information from marginal distributions in unlabeled
data to construct semi-supervised classifiers and leveraged
expectation Laplace regularization into probabilistic models
for semi-supervised learning. Lin et al. [40] proposed a joint
framework that aimed to maximize the mutual information of
different views through contrastive learning for consistency
and minimized the conditional entropy through pairwise pre-
diction to recover missing views. Lin et al. [41] achieved the
learning of consistent representations for different views and
the recovery of missing views by simultaneously maximizing
the mutual information across diverse views and minimizing
the conditional entropy of pairwise predictions. Yang et al.
[42] introduced a contrastive learning paradigm aimed at
addressing both the issue of the partial view inconsistency
and the problem of the partial sample missing within a unified
framework. All of these studies collectively demonstrate that
multi-view learning exhibits superior performance compared
to single-view learning. However, a common drawback across
them is the absence of topological consistency and speci-
ficity in extracting multi-view graphs. This limitation presents
challenges in effectively developing graph-based multi-view
methods.

C. Multi-view Graph Construction

When using graph-based algorithms, it is essential to con-
struct graphs for real-world multi-view data, as they frequently
lack a natural topology. One of the most commonly used graph
construction algorithms is the k-nearest neighbors (kNN),
which achieves promising results [43], [44], defined as

A
(v)
ij =

{
1, x

(v)
i ∈ kNN(x

(v)
j ) or x(v)

j ∈ kNN(x
(v)
i ),

0, otherwise,
(2)

where A
(v)
ij is the (i, j)-th element of the v-th view adjacency

matrix, x
(v)
i represents the i-th row vector of X(v), and

kNN(x
(v)
i ) denotes the set of k nearest neighbors of x(v)

i . Tang
et al. [45] took a traditional predefined graph matrix, such as
a cosine similarity graph, and learned an improved graph for
each individual view to capture the geometric structure of the
original space using an iterative cross-diffusion process. Li
et al. [46] introduced a method that constructs an intrinsic
similarity graph in a spectral embedding space rather than
the original feature space. Wu et al. [47] learned the view-
specific affinity matrix based on the projection map and
its intrinsic tensor using low-rank tensor approximation, and
jointly learned the optimal affinity matrix by integrating these
two conditions. While current methods for constructing multi-
view graphs have to be promising, they encounter challenges
in integrating the extraction of both consistency and comple-
mentarity from multi-view graphs while linking them with
specific downstream tasks. This limitation may lead to the
constructed graphs that are not sufficiently informative and
tend to be suboptimal for addressing downstream tasks.

III. THE PROPOSED METHOD

A. Overview and Notations

In this section, we denote multi-view data to be X =
{X(1), X(2), · · · , X(V )}, where V is the number of views
and X(v) is the v-th view data. For the v-th view, we have
X(v) ∈ Rn×dv , where n represents the number of data
and dv represents the feature dimension. We present a uni-
fied optimization framework for multi-view semi-supervised
classification. The framework extracts both topological con-
sistency and complementarity while integrating multi-view
graph construction and the downstream classification tasks.
We introduce three iterative optimization networks to ensure
that the learned graph effectively captures both the labeling
information of the downstream task and the consistency and
complementarity of the geometry of the original space. In
addition, our method employs a learnable threshold shrinkage
function that dynamically adjusts the threshold to improve the
quality of the underlying graph.

To facilitate the understanding of the mathematical symbols
used in this paper, we have included Table I with an expla-
nation for each symbol. This table clarifies the meaning and
interpretation of the symbols, enhancing the comprehension of
the presented concepts.
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TABLE I
SYMBOLIC NOTATIONS WITH THEIR DESCRIPTIONS.

Notations Descriptions

X(v) The v-th view feature matrix.
A(v) The graph constructed from X(v) by kNN.
P(v) The v-th view projection matrix.
Y Label matrix with n× c.
Z The shared representation of the features.
O(l,v) Input of the network to the l-th layer.
W

(l,v)
p , b(l,v)p Weights and biases of the network.

Φ Learnable parameters of the generator.
Wd Learnable parameters of the discriminator.
W(l) Learnable weight matrix of the l-th layer of GCN.
H(l) Input of GCNs in the l-th layer, where H(0) = Z.
A The learned adjacency matrix.
ρ(·) Learnable threshold shrinkage function.
θ, θ1, θ2 Learnable variables in ρ(·).
ϵ The gap between θ1 and θ2.
σ(·) Optional activation function.

B. Shared Representation Learning Module
Shared Representation Extraction Network. To inves-

tigate the intricate connections among different views, our
method draws inspiration from the reconstruction approach
and posits multiple views stemming from a shared latent
representation. Given a multi-view dataset X = {X(1), · · · ,
X(V )}, where X(v) ∈ Rn×dv denotes the features of the
v-th view with dv dimensions. We aim to obtain a shared
representation Z that can be transformed back to the original
feature space using different projection matrices. The objective
function can be defined as

min
Z,P(v)

V∑
v=1

∥X(v) − ZP(v)∥2F , (3)

where P(v) denotes the projection matrix of the v-th view
and ∥ · ∥F represents the Frobenius norm. To enhance the
flexibility of this process, we introduce a neural network-based
approach for approximation. The formulation of this approach
is as follows,

O(l+1,v) = σ(O(l,v)W(l,v)
p + b(l,v)

p ), (4)

where O(0,v) = Z, W(l,v)
p and b

(l,v)
p are weight and bias of

l-th layer, respectively, and σ(·) is the layer-specific activation
function. The loss function of this process is defined as

Lre =

V∑
v=1

∥X(v) −O(L,v)∥2F , (5)

where L is the layer number of the neural network. Con-
sidering that the shared representations above only take into
account the views themselves without considering downstream
tasks, our objective is to integrate both inter-view consistency
and downstream task information into the learning process. To
accomplish this, we combine the classification loss Lce and the
reconstruction loss Lre to derive the final reconstruction loss
Lre′ . The specifics are as follows:

Lre′ = Lre + αLce, (6)

where Lce is the cross-entropy loss which will be defined in
the following part and α is the hyperparameter.

C. Graph Learning Module

To capture the inherent connectivity patterns across multiple
views, we employ a generator network tasked with trans-
forming the acquired shared representations into adjacency
matrices, reflecting the consistent similarity between samples.
Subsequently, the discriminator network utilizes the graphs in
the original space as a geometric prior, dynamically adjusting
the weight assignment of each node’s neighbors to capture
complementarity. The details of this process are outlined
below.

Graph Discriminator. The discriminator D assigns a score
to each edge in a given adjacency matrix A. A higher score
indicates a better quality of the node connection. The form is
as follows,

D(A) = Diag(σ(AWd)), (7)

where Diag: Rn×n → Rn×1 extracts the diagonal elements
of the matrix as a vector, and Wd is a learnable scoring
matrix. To ensure that the generator retains the distinctive
information about the topology of the original space, we
incorporate the node connections from the original space as
the geometric prior with high scores. The primary objective
of the discriminator is to assign a high score to the topology
observed in the original space while assigning a low score
to the topology generated by the generator. The objective
function is as follows,

max
Wd

V∑
v=1

n∑
i=1

D(A(v))i +min
Wd

n∑
i=1

D(G(Z))i, (8)

where A(v) is the adjacency matrix of the v-th view con-
structed by kNN, and G(·) is the graph generator defined as
follows. The loss function of the discriminator can be defined
as

LD = −
V∑

v=1

n∑
i=1

log[D(Av)i]−
n∑

i=1

log[1−D(G(Z)i)].

(9)
Graph Generator. The graph generator utilizes the shared

representation to establish the similarities between pairs of
samples in a given space. We propose that the graph structure
is a function of the features and define A as follows,

Aij = G(Z)ij = φ(
MLPΦ([zi; zj ]) + MLPΦ([zj ; zi])

2
),

(10)
where φ(·) : R → [0, 1], zi is the i-th sample of the shared
representation Z, MLP refers to a multi-layer perceptron
parameterized with Φ and [·; ·] denotes the concatenation
operator. We intentionally enforce Aij = Aji to ensure the
symmetry of the generative graph structure, as our primary
focus is on dealing with symmetric graphs. However, it is
also possible to adapt this approach to an asymmetric graph
by adjusting the following Aij = φ(MLPΦ([zi; zj ]).

The goal of the graph generator is to learn node connectivity
that can be assigned high scores from the discriminator. This
objective is defined by the following objective function,

max
Φ

n∑
i=1

D(G(Z))i. (11)
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The loss function of the generator can be defined as

LG = −
n∑

i=1

log[D(G(Z))i]. (12)

Upon further consideration, we acknowledge that the previ-
ously mentioned objective function for obtaining the adjacency
matrix does not explicitly consider the requirements of specific
downstream tasks. To overcome this limitation, we propose
incorporating information of the node labels to provide addi-
tional guidance for the generation of the underlying connec-
tions. This can be achieved by introducing a loss function,

Lce =
∑
i∈Ω

f(GCN(G(Z),Z)i,Yi), (13)

where the function f(·) represents the discrepancy between the
predicted label obtained by the learned graph and the actual
value of the sample. The sample set Ω represents the label
matrix derived from Y ∈ Rn×c. GCN(·) refers to a denoised
graph convolutional network that incorporates a learnable
threshold contraction function. The details of this function
are described in the subsequent subsection. The modified loss
function of the generator can be defined as

LG′ = LG + Lce. (14)

D. Denoised Graph Convolutional Network
Due to the possibility of minor noise in the essential graph

obtained from the previous module, a refinement process is
required to filter out insignificant values without compromis-
ing the strong connectivity relationships. In this regard, we
introduce an adaptive threshold shrinkage function that can
effectively refine the learned adjacency matrix. This function
ρ(·) is defined as follows,

ρ(x; θ1, θ2) = w1ReLU(x− θ1)− w2ReLU(x− θ2), (15)

where w1 = θ2
θ2−θ1

and w2 = θ1
θ2−θ1

, θ1 and θ2 are learnable
parameters with 0 < θ1 < θ2 < 1. To ensure this constraint is
satisfied during the training process, a learnable variable θ and
an activation function Sigmoid are used to generate θ1 and θ2.
The details are shown below,

θ1 =
Sigmoid(θ)

2
, θ2 =

Sigmoid(θ)
2

+ ϵ,

where ϵ is a pre-defined parameter used to measure the
gap between θ1 and θ2. Equation (15) is called Learnable
Piecewise ReLU (LPReLU). The comparison of ReLU, Soft
Thresholding, and LPReLU is shown in Fig. 2. The update
formula for GCN with threshold function is defined as follows

H(l+1) = σ(D̃− 1
2 ρ(Ã; θ1, θ2)D̃

− 1
2H(l)W(l)), (16)

where H(0) = Z. The prediction carried out by a two-layer
GCN can be written as

H(2) = Softmax(Âσ(ÂH(0)W(1))W(2)), (17)

where Â = D̃− 1
2 ρ(Ã; θ1, θ2)D̃

− 1
2 and the loss of GCN with

learnable threshold shrinkage function can be calculated as

Lce = −
∑
i∈Ω

c∑
j=1

Yij logHij . (18)

Fig. 2. The comparison among ReLU, Soft thresholding, and LPReLU
functions has been conducted, where θ1 is set to 0.05, θ2 is set to 0.1,
and the soft thresholding is defined as ReLU(x− θ1).

E. Model Training

To obtain the final predictive representation, we initially
acquire a shared representation across multiple views using
the shared representation learning module. Subsequently, our
graph learning module undergoes alternating training to learn
an essential graph. This learned graph is further refined using a
learnable threshold shrinkage function ρ(·). The refined essen-
tial graph A is then combined with the shared representation
Z using GCN to derive the predictive representation H.

The training strategy adopts a multi-step optimization ap-
proach. This approach consists of four main steps: optimizing
the parameters of the shared representation learning network,
optimizing the parameters of the generator, optimizing the
parameters of the discriminator, and optimizing the network
parameters of the GCN with a learnable threshold shrinkage
function. Each module performs one step of forward propaga-
tion and one step of backward propagation in each iteration to
update its network parameters based on its corresponding loss
function. The procedure for the proposed method is outlined
in Algorithm 1.

IV. EXPERIMENTAL ANALYSIS

A. Experimental Setup

In this section, we evaluate the performance of the proposed
method on seven real-world datasets. Table II comprises a de-
scription of these datasets, including the numbers of samples,
views, and data types.

TABLE II
A BRIEF DESCRIPTION OF THE TESTED DATASETS.

Datasets # Samples # Views # Classes # Data types

GRAZ02 1,476 6 4 Object image
HW 2,000 6 10 Digit image

OutScene 2,688 4 8 Object image
100leaves 1,600 3 100 Object image
MNIST 10,000 3 10 Digit image
Scene15 4,485 3 15 Object image

NoisyMNIST 15,000 2 10 Digit image
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Algorithm 1 Generative Essential Graph Convolutional Net-
work (GEGCN)
Input: Multi-view data X = {X(1), · · · , X(V )}, label set Y,

the number of GCN layers L, the number of neighbors k
and the hyperparameters ϵ and α.

Output: Predictive output H.
1: Initialize the parameters {W(l,v)

p ,b
(l,v)
p }Ll=1 of the consis-

tent representation learning module;
2: Initialize the parameters Φ and Wd of the generator G

and the discriminator D respectively;
3: Initialize the parameters θ and {W(l)}Ll=1 of the denoised

graph convolutional network;
4: Calculate adjacency matrices {Av}Vv=1 via kNN;
5: while not convergent do
6: Compute Z, optimize {W(l,v)

p , b
(l,v)
p }Ll=1 by backward

propagation with Equation (6);
7: Compute A by G(Z), and optimize Φ by backward

propagation with Equation (14);
8: Compute {D(Av)}Vv=1 and D(A), and optimize Wd

by backward propagation with Equation (9);
9: Calculate H of the learnable GCN with Equation (17);

10: Update {W(l)}Ll=1 and θ of the learnable GCN with
back propagation;

11: end while
12: return Predictive output H.

• GRAZ02 [48]: This widely used object dataset comprises
images from four different classes and includes six com-
monly used representations: 512-D GIST features, 225-D
WT features, 256-D LBP features, 500-D SIFT features,
500-D SURF features, and 680-D PHOG features.

• HW [48]: It consists of 2,000 pictures categorized into
6 classes, with 153-D Profile-correlation features, 596-
D Fourier-coefficient features, 301-D Karhunen-Loeve-
coefficient features, 27-D Morphological features, 481-
D intensity-averaged features, 157-D Zernike Moment
features.

• OutScene [49]: This image dataset contains 2,688 in-
stances categorized into eight classes. It includes 512-D
GIST features, 59-D LBP features, 864-D HOG features,
and 254-D GENT features.

• 100leaves [45]: This dataset contains 1,600 plant species
categorized into 100 classes. Each plant species is char-
acterized by three extracted visual features: 64-D shape
descriptor features, 64-D fine scale margin features, and
64-D texture histogram features.

• MNIST [50]: It comprises 10,000 images from 10 classes
and includes three commonly used features: 30-D Iso-
projection, 9-D Linear Discriminant Analysis, and 9-D
Neighborhood Preserving Embedding features.

• Scene15 [51]: This scene image dataset comprises 4,485
images categorized into 15 different categories, with
three perspectives captured for each image. The feature
dimensions for each perspective are 1,800, 1,180, and
1,240, respectively.

• NoisyMNIST [52]: It is comprised of randomly selected
15,000 samples from the MNIST image database in
10 classes. Therein, the given images come with white
Gaussian noise of varied intensities.

We describe the compared algorithms and the experimental
setup. The following algorithms are used for testing, including
MVAR [48], WREG [53], HLR-M2VS [54], ERL-MVSC [55]
Co-GCN [56], DSRL [57], LGCN-FF [43], IMvGCN [44] and
JFGCN [58]. A description of these methods is given below.
• MVAR: This framework utilizes the ℓ2,1-norm to compute

the regression loss for each independent view. The trade-
off weight for each view is set as λ = 1e3, and the
redistribution parameter r is fixed at 2.

• WREG: It is a framework that maps the concatenation
of raw features onto a discriminative low-dimensional
subspace to integrate multi-view data. We select the trade-
off λ in {1e−3, 1e−2, 1e−1, 1e0, 1e1, 1e2, 1e3} and set the
termination parameter ϵ = 1e−3.

• HLR-M2VS: The framework constructs a unified tensor
space to jointly explore the relationships among multiple
views using a local geometric structure. We select the
weighted factors as λ1 = 0.2 and λ2 = 0.4.

• ERL-MVSC: The framework integrates diversity, spar-
sity, and consensus to deftly handle multi-view data with
limited labels. We set the smoothing factor α = 2, the
embedding parameter β = 1, the regularization parameter
γ = 1, and the fitting coefficient δ = 10.

• Co-GCN: The method introduces GCN into multi-view
learning and obtains multi-view spectral information by
adaptively combining Laplacian matrices. The settings for
the graph convolutional layers are 2 and the number of
neighbors is 10.

• DSRL: The framework uses a deep sparse regularizer
learning model to adaptively learn data-driven sparse reg-
ularizers for multi-view clustering and semi-supervised
classification. The number of layers is fixed at 10.

• LGCN-FF: The framework considers a joint neural net-
work of both feature and graph fusion. The default setting
for hyperparameters controlling the sparsity penalty de-
gree is β = 1.

• IMvGCN: The framework introduces multi-view recon-
struction errors paired with Laplace embeddings to cap-
ture independence and consistency. The default setting
for hyperparameters λ = 0.5 and α = 1e−5.

• JFGCN: It is an end-to-end joint fusion framework de-
signed to simultaneously execute consistent feature fusion
and adaptive topology adjustment. The default setting for
the hyperparameter is λ = 1.

In the proposed method, the shared representation Z is
randomly initialized with a dimension of 100. The features
of each view are reconstructed from the shared representation
through a series of fully connected networks with the number
of neurons set to (100, 1024, dv), where dv represents the
dimension of the v-th view feature.

For the samples employed as labels, we independently
selected 10% of the data for each category randomly. In
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TABLE III
CLASSIFICATION RESULTS (MEAN% AND STANDARD DEVIATION%) OF ALL COMPARED SEMI-SUPERVISED CLASSIFICATION METHODS WITH 10%

LABELED SAMPLES AS SUPERVISION, WHERE THE BEST RESULTS ARE HIGHLIGHTED IN BOLD, AND THE SECOND-BEST RESULTS ARE HIGHLIGHTED IN
UNDERLINED.

Dataset Metrics MVAR WREG HLR-M²VS ERL-MVSC Co-GCN DSRL LGCN-FF IMvGCN JFGCN GEGCN-S GEGCN

100leaves
ACC 39.1 (2.4) 67.7 (5.9) 54.4 (2.2) 58.1 (0.1) 30.3 (5.0) 67.9 (1.6) 62.1 (0.6) 85.0 (1.1) 81.6 (0.9) 88.4 (0.1) 91.1 (0.5)
F1 40.1 (3.1) 61.3 (6.3) 52.8 (2.1) 57.7 (0.1) 29.1 (4.9) 64.4 (1.8) 61.7 (0.5) 84.4 (1.1) 81.4 (1.1) 87.8 (0.1) 91.0 (0.5)

HW
ACC 77.8 (2.6) 89.1 (0.4) 85.3 (0.0) 87.0 (0.4) 91.6 (2.7) 77.9 (0.9) 92.6 (0.1) 93.4 (0.8) 93.4 (2.5) 94.8 (0.2) 96.0 (0.2)
F1 78.0 (2.5) 89.3 (0.3) 86.9 (0.0) 87.5 (0.3) 91.5 (2.8) 78.7 (0.7) 92.5 (0.2) 93.4 (0.9) 93.4 (2.5) 94.8 (0.3) 96.0 (0.2)

MNIST
ACC 84.4 (0.3) 88.9 (0.5) 84.9 (0.2) 91.7 (0.1) 90.7 (0.5) 89.2 (0.0) 88.8 (0.1) 88.3 (1.1) 90.0 (0.6) 93.3 (0.1) 93.6 (0.1)
F1 84.6 (0.3) 88.8 (0.5) 83.2 (0.1) 91.6 (0.1) 90.6 (0.5) 89.5 (0.0) 86.9 (0.1) 88.1 (1.1) 89.9 (0.6) 93.2 (0.2) 93.5 (0.1)

GRAZ02
ACC 52.5 (1.8) 43.4 (3.5) 54.7 (2.6) 54.1 (1.3) 40.5 (2.6) 48.1 (1.0) 49.6 (2.5) 56.2 (0.5) 57.8 (1.2) 61.6 (0.5) 61.6 (0.5)
F1 52.9 (2.0) 43.6 (3.6) 56.3 (1.8) 54.4 (1.2) 38.9 (1.5) 48.6 (1.0) 43.7 (1.0) 55.0 (0.6) 57.8 (1.2) 61.5 (0.3) 61.5 (0.3)

Scene15
ACC 44.3 (9.7) 52.3 (2.0) 67.4 (1.3) 63.1 (1.2) 58.7 (1.1) 61.8 (0.9) 50.1 (4.4) 65.6 (3.0) 72.2 (0.6) 71.8 (0.3) 72.9 (0.4)
F1 45.8 (8.4) 52.6 (2.0) 67.3 (0.9) 63.9 (1.3) 56.7 (0.9) 60.5 (0.8) 42.3 (5.7) 62.0 (2.9) 70.7 (0.6) 70.1 (0.3) 71.8 (0.5)

OutScene
ACC 46.1 (11.3) 57.6 (1.8) 73.3 (1.3) 68.8 (1.4) 71.0 (2.1) 44.7 (0.8) 61.1 (11.0) 77.2 (0.7) 79.3 (0.5) 77.6 (0.3) 78.3 (0.6)
F1 50.8 (11.1) 58.6 (1.6) 75.2 (1.2) 69.2 (1.4) 71.3 (2.0) 42.1 (2.9) 57.9 (15.6) 77.4 (0.8) 79.4 (0.5) 77.9 (0.3) 78.4 (0.7)

NoisyMNIST
ACC 70.1 (0.5) 76.5 (0.4) OM OM 83.6 (1.2) 91.6 (0.2) 70.7 (3.3) 88.6 (0.1) 87.8 (0.6) 95.7 (0.2) 96.3 (0.3)
F1 69.4 (0.5) 76.1 (0.3) OM OM 83.0 (1.4) 91.4 (0.2) 70.2 (3.2) 88.2 (0.1) 87.6 (0.6) 95.0 (0.2) 96.2 (0.2)

Limited by the computational complexity of the algorithm and machine resources, some models encounter out-of-memory errors when processing the
NoisyMNIST dataset, indicated by “OM”.

(a) MVAR (b) WREG (d) HLR-M²VS (e) ERL-MVSC (f) Co-GCN

(g) DSRL (h) LGCN-FF (k) GEGCN(i) IMvGCN (j) JFGCN

Fig. 3. T-SNE visualization of semi-supervised classification results from the compared methods on the HW dataset.

(a) Average (b) LGCN-FF (c) GEGCN

Fig. 4. Visualization of the weighted average adjacency matrix, the adjacency matrix obtained by LGCN-FF, and the adjacency matrix learned by GEGCN.
The matrices are represented using colors, with darker shades indicating higher element values. Notably, red boxes are used to emphasize reduced or vanishing
node connections.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2024.3374579

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fuzhou University. Downloaded on March 09,2024 at 05:15:56 UTC from IEEE Xplore.  Restrictions apply. 



8

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Ratio of labeled samples

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Ratio of labeled samples

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Ratio of labeled samples

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Ratio of labeled samples

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

(a) 100leaves

(d) MNIST (e) OutScene (f) Scene15

(b) GRAZ02 (c) HW

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Ratio of labeled samples

35

40

45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Ratio of labeled samples

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

MVAR
WREG

HLR-M²VS
ERL-MVSC

Co-GCN
DSRL

LGCN-FF
IMvGCN

JFGCN
GEGCN

0.5 0.5

0.50.5

Fig. 5. The performance (Accuracy %) of all compared methods on six test datasets with the ratio of labeled samples ranging from 0.05 to 0.50.

instances where labeled samples fail to yield integer values
after calculation, we applied upward rounding. For the graph
generator, we utilize an MLP with the number of neurons fixed
as (200, 32, 1). The graph discriminator uses a randomly ini-
tialized learnable weight matrix, denoted as Wd. We employ a
two-layer GCN with an Adam optimizer, setting the learning
rate as lr = 0.01 and the weight decay as 5e−4. The used
activation function is the ReLU function. The gap between θ1
and θ2 is set as ϵ = 0.05. For the kNN algorithm utilized
to construct the adjacency matrices, the hyperparameter k is
varied within a range from 5 to 15. Additionally, we establish
a simplified version of GEGCN, denoted as GEGCN-S, where
the optimization is solely based on the loss function Lre. In
this version, the shared representation can be precomputed and
is not involved in the model’s optimization process. The code
has been uploaded to Github1

B. Multi-view Semi-supervised Classification

In this subsection, we performed experiments on seven real-
world datasets using 10% labeled samples for supervision.
The used evaluation metrics are classification accuracy and
F1-score, and the results are presented in Table III. The
experimental results demonstrate that the proposed approach
outperforms most other methods on all the datasets, indicating
its superiority in terms of classification performance. Notably,

1https://github.com/long319/GEGCN.

for the GRAZ02 and 100leaves datasets, GEGCN exhibits
remarkable improvements, showcasing its capability to effec-
tively capture correlations among multigraphs derived from
small datasets.

To provide a visual representation of the classification
performance of GEGCN, we acquire the representations of
all methods and project them onto a two-dimensional space
utilizing t-distributed random neighborhood embedding (t-
SNE), respectively. Subsequently, color codes are assigned
to the mapped 2D data on the ground truth. In Fig. 3, the
consistency of our proposed approach with the ground truth
class labels, along with its ability to generate clear inter-class
partition lines, further strengthens the validity and superiority
of our model.

Fig. 4 presents visualizations of the graphs learned through
different approaches: the weighted average of the adjacency
matrix, the graph derived from LGCN-FF, and GEGCN.
Notably, the adjacency matrix learned by the proposed method
demonstrates a distinctively pure and refined structure. The
improved performance of GEGCN can be attributed to its
utilization of downstream label information for learning and
optimization, combined with the use of LPReLU. This pro-
cess selectively eliminates small connections between samples
of different categories while preserving connections among
samples of the same category. Consequently, the resulting
adjacency matrix becomes sparser and more robust, leading
to an enhancement in the graph structure.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2024.3374579

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fuzhou University. Downloaded on March 09,2024 at 05:15:56 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/long319/GEGCN


9

(a) 100leaves (b) GRAZ02 (c) HW

(d) MNIST (e) OutScene (f) Scene15

Fig. 6. The convergence curves of training loss values and test accuracy with GEGCN on six datasets.

(a) 100leaves (b) GRAZ02 (c) HW

(d) MNIST (e) OutScene (f) Scene15

Fig. 7. The convergence curves of generator loss values and discriminator loss values with GEGCN on six datasets.
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Additionally, Fig. 5 presents the performance of each com-
parative algorithm under varying labeled sample rates. The
findings from the figure indicate that GEGCN is especially
suitable for semi-supervised classification tasks, as it exhibits
commendable performance even when confronted with limited
sample label rates. Conversely, the alternative methods neces-
sitate a substantially larger amount of supervised information
to achieve comparable levels of performance. To assess the
statistical significance of the experimental results at high
supervision ratios, we employ the Friedman test [59]. Table IV
displays the p-value for the traditional methods, the network-
based methods, and all methods across six test datasets.
Notably, all p-values at high supervision ratios are below 0.05.
Consequently, we reject the null hypothesis, indicating that
the performance of the compared methods at high ratios is
significantly different at a confidence level of 95%.

TABLE IV
P-VALUE FOR TRADITIONAL ALGORITHMS (MVAR, WREG, HLR-M²VS,

AND ERL-MVSC), NETWORK-BASED ALGORITHMS (CO-GCN, DSRL,
LGCN-FF, IMVGCN, JFGCN, AND GEGCN), AND ALL ALGORITHMS

ON SIX DATASETS.

Methods/Ratio 0.40 0.45 0.50

Traditional Methods 0.018 0.013 0.030

Network-based Methods 0.003 0.003 0.003

All Methods 1.3e−5 1.4e−5 1.6e−5

C. Convergence Analysis

In this subsection, we provide a comprehensive analysis of
the convergence behavior of GEGCN across all datasets. Fig.
6 showcases the convergence curves of cross-entropy loss and
test accuracy, offering insights into the training process. From
the figure, it can be observed that the loss and accuracy stabi-
lize and converge after approximately 500 training iterations
for all datasets. Notably, the loss curve for the MNIST dataset
exhibits a steep decline during the training process, which may
be attributed to the large number of samples and the presence
of noisy connections in the learned graph. Once the threshold
shrinkage function adjusts the threshold to an appropriate
point, it effectively removes unreasonable connections and
improves performance. Additionally, by gradually adjusting
the threshold until the next equilibrium point is reached,
larger noise is filtered out, leading to further enhancements
in performance.

Fig. 7 presents the convergence curves for the generator and
discriminator losses. From the figure, it can be observed that
the loss of the discriminator gradually decreases over time,
while the loss of the generator gradually increases. Eventu-
ally, both losses reach a point of stability or convergence.
Both losses stabilize and converge after approximately 1, 000
training iterations. However, the proposed method requires a
larger number of training iterations on the MNIST dataset due
to its larger sample size.

TABLE V
ABLATION STUDY OF GEGCN ON SEVEN DATASETS WITH ACC (%) AND

F1 (%).

Dataset/Method Metric G-WLT G-WL G-WT GEGCN

GRAZ02

ACC

49.96 60.04 60.79 61.63
MNIST 87.77 87.91 93.07 93.30

HW 75.77 75.83 91.61 94.78
OutScene 70.40 70.98 76.10 77.55
100leaves 66.21 75.85 86.64 88.36
Scene15 62.55 63.74 67.23 71.80

NoisyMNIST 82.14 82.20 91.34 95.70

GRAZ02

F1

43.06 59.88 61.16 61.54
MNIST 87.61 87.74 92.98 93.20

HW 75.62 75.69 91.63 94.78
OutScene 67.05 67.60 76.56 77.86
100leaves 57.88 69.94 86.15 87.78
Scene15 56.71 59.74 65.55 70.06

NoisyMNIST 81.69 81.75 91.15 95.00

D. Ablation Study

To showcase the impact of the learned graph and the
threshold shrinkage function, additional tests were conducted.
These evaluations assessed the performance under various
conditions, namely without utilizing the learned graph (re-
ferred to as G-WL), without applying the threshold shrink-
age function (referred to as G-WT), and without employing
both (referred to as G-WTL). The experimental results are
presented in Table V. The results clearly show that the learned
graph effectively captures the connectivity among the samples,
surpassing the graphs derived from the original space. This
enhancement is particularly noticeable in the 100leaves dataset
which comprises multiple categories, where the graphs in
the original space may encompass unreliable connections.
Through the learned graph, we can identify connections that
more accurately represent the data, thereby adapting to down-
stream tasks. Upon comparing the performance of G-WT
and GEGCN, it is apparent that the performance of GEGCN
is further enhanced, underscoring the effectiveness of the
proposed learnable threshold shrinkage function.

E. Parameter Sensitivity

In this subsection, we conduct a parameter sensitivity analy-
sis of our proposed method for all datasets using accuracy and
F1-score as evaluation metrics. The impact of the parameter k
is presented in the accompanying Fig. 8. The results indicate
that the proposed model remains stable across most of the
datasets and achieves optimal performance when the hyper-
parameter k is set to 10. Interestingly, we observe a peculiar
phenomenon in the 100leaves dataset where the performance
gradually decreases as k increases. Building on this observa-
tion, we provide the average homophilic rate of the constructed
graph, as illustrated in Table VI. Notably, it is observed that
the homophilic rate of the dataset 100leaves experiences a
marked decrease as the value of k increases, contributing to
the phenomenon of performance degradation. Simultaneously,
we conduct a sensitivity analysis on the hyperparameter α,
with the results depicted in Fig. 9. It is evident from the figure
that α = 1 or 0.1 consistently yields satisfactory results across
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Fig. 8. The sensitivity of the proposed method’s parameters, in terms of Accuracy (%) and F1-score (%), with respect to the number of neighbors is evaluated
on all datasets.

the majority of datasets. Additionally, our experimental results
indicate that the proposed framework consistently outperforms
state-of-the-art algorithms, even without requiring specific
parameter tuning. These findings highlight the effectiveness
and competitiveness of our approach in addressing multi-view
semi-supervised classification tasks.

TABLE VI
AVERAGE HOMOPHILIC RATE (%) OF THE DATASETS FOR DIFFERENT

VALUES OF k.

Dataset/k 5 10 15 20 25 30 35 40

100leaves 61.6 44.7 35.9 29.7 25.5 22.4 20.0 18.1
GRAZ02 46.6 42.1 40.3 39.3 38.5 37.9 37.5 37.0

HW 74.7 68.0 64.0 61.1 58.7 56.8 55.1 53.8
MNIST 94.7 91.4 89.3 88.0 87.0 86.2 85.6 85.0

OutScene 57.5 52.0 49.2 47.6 46.4 45.4 44.5 43.8
Scene15 59.5 51.3 47.1 44.7 43.0 41.7 40.6 39.7

NoisyMNIST 77.4 75.7 72.9 70.4 68.3 66.8 65.5 64.4

Fig. 9. Parameter sensitivity (Accuracy %) of the proposed method w.r.t. α
on all datasets.

V. CONCLUSION

This paper introduces an end-to-end framework called
GEGCN which aims to enhance the performance of graph
embeddings by incorporating view consistency, complemen-
tarity, and downstream task information in graph construction.
The framework begins by obtaining a shared representation,
which is then transformed into a graph with consistency.
This process gradually integrates the specificity of each view
graph and combines it with information from downstream
tasks. To enhance the reliability and sparsity of the learned
graphs, we propose a denoised GCN with a learnable threshold
shrinkage function. This function dynamically adjusts the
threshold to effectively filter out noisy connections, resulting
in a purer graph. The final step involves obtaining robust graph
embeddings using the denoised GCN. Experimental results on
various datasets showcase the effectiveness of the proposed
framework.

This study proposes several intriguing potential research
directions that warrant further exploration. Currently, GCN-
based multi-view algorithms primarily focus on investigating
the consistency and complementarity of the feature space.
These approaches typically rely on the kNN algorithm for
constructing multi-view data topology with notable limitations,
particularly concerning the high heterogeneity of the resulting
graphs. Exploring novel approaches to measuring inter-sample
similarity represents a promising direction for enhancing the
performance of GCN on multi-view data. In future research,
we intend to extend the application of GEGCN beyond multi-
view data to various other domains.
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