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A B S T R A C T

Graph convolutional network has emerged as a focal point in machine learning because of its robust graph
processing capability. Most existing graph convolutional network-based approaches are designed for single-
view data, yet in many practical scenarios, data is represented through multiple views. Moreover, due to the
complexity of multiple views, normal graph generation methods cannot mitigate redundancy to generate a
high quality graph. Although the ability of graph convolutional network is undeniable, the quality of graph
directly affects its performance. To tackle the aforementioned challenges, this paper proposes a multi-scale
graph generation deep learning framework, called multi-scale semi-supervised graph generation based multi-
view classification, consisting of two modules: edge sampling and path sampling. The former aims to generate
an adjacency graph by selecting edges based on the maximum likelihood among graphs from different views.
Meanwhile, the latter seeks to construct an adjacency graph according to the characteristics of paths within
the graphs. Finally, the statistical technique is employed to extract commonality and generate a fused graph.
Extensive experimental results robustly demonstrate the superior performance of our proposed framework,
compared to other state-of-the-art multi-view semi-supervised approaches.
1. Introduction

In the past decade, there has been a growing interest among re-
searchers in the field of multi-view learning, which involves analyzing
data from different perspectives. Most of the time, quality information
is hidden in the various sources data. Multi-view learning refers to
extracting information from data that comes from multiple sources and
has made great progress recently. Therefore, an abundance of multi-
view learning approaches is proposed for application fields, such as text
categorization (He et al., 2024; Qu et al., 2020; Yang et al., 2020), video
analysis (Wang, Tan et al., 2023; Wu et al., 2021; Yan et al., 2022), and
object detection (Labbé et al., 2020; Xu et al., 2023; Zou, Cheng et al.,
2024). However, the process of obtaining supervisory information in
these areas is costly due to the reliance on manual labeling methods.

In response to the above problem, semi-supervised learning has been
proposed. Many technologies that require only a small portion of super-
visory information to make accurate predictions in machine learning
are proposed, such as graph neural network (Bronstein et al., 2017),
generative adversarial network (Goodfellow et al., 2014), and Graph
Convolutional Network (GCN) (Seo et al., 2018). Specifically speak-
ing, graph neural network leverages the connectivity patterns within
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graph structures by iteratively updating node representations through
message passing. Generative adversarial network incorporates attention
mechanisms that allow nodes to selectively aggregate information from
their neighbors based on learned weights, leading to more adaptable
and powerful node representations for diverse graph-related tasks. GCN
extracts meaningful representations from graphs by propagating and
aggregating information across nodes via graph convolutional layers.
Notably, the remarkable capability of GCNs in multi-view scenarios has
been demonstrated by various approaches. To be specific, the ability
to acquire semantic features through multiple convolutional layers
greatly enhances its performance. Numerous existing GCN variants
make substantial contributions to multi-view learning and address the
interrelationships among different views. However, these GCN variants
generally assume that all views reflect the same underlying type of
relational information, and ignore the fact that multi-view data has dif-
ferent feature spaces, where each space has its graph. This has resulted
in these GCN variants ignoring the importance of graph quality in the
GCN process, making them not well adapted to multi-view learning.

Improving graph quality requires an effective graph generation
method. The goal of graph generation is parsing the feature space with
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Fig. 1. The proposed method includes the construction of a basis adjacency matrix, the statistical technique, and the label propagation module. It utilizes the first two parts to
explore the full information in edge or path separately and obtain a graph corresponding to the statistical technique. With this technique, the complete information is obtained.
The label propagation module obtains the final representation.
the purpose of generating a structured representation of instances. Li
et al. (2024) To deal with how to learn complete structural information,
several attempts on graph generation methods have been proposed
to explore graph structures among different feature spaces. In the
field of multi-view learning, the information spanning different views
is complex and intricate, which makes the simple graph generation
difficult to achieve an unified assimilation of information. Moreover,
the various graph generation methods are diverse, and there is a lack
of a standardized framework to unify the graph generation process.

In this paper, we propose a multi-scale structure-guided graph
generation for multi-view learning. The proposed framework has two
sampling ways: edge sampling and path sampling. First, a simple yet
effective process is used to create the basic adjacency graph from multi-
view feature spaces. After that, the structural information from multiple
adjacency graphs is collected by alternative sampling methods. Fi-
nally, the statistical technique is employed to extract commonality and
generate a fused graph from the structural information. This specific
graph can share information from each view, allowing better message
passing and disturbance resistance. Finally, this graph can be applied
to any GCN method with its high quality information in multi-view
learning. Therefore, the proposed method is a joint framework that
takes messages with edge sampling or path sampling, respectively. The
framework is presented in Fig. 1. In a nutshell, our contributions are
summarized as follows.

• Two alternative sampling methods are provided to collect the
structural information, and then a statistical technique is em-
ployed to extract commonality and generate a fused graph.

• An efficient framework for graph generation, integrated with
reinforcement learning, has been developed to facilitate the con-
struction of graphs within the context of multi-view learning.

• Comprehensive practical evaluations of six real-world datasets
show the superiority of the proposed framework over the state-
of-the-arts.

The subsequent sections of this paper are structured as follows. Sec-
tion 2 provides a thorough review of semi-supervised learning and
GCN-based methods on multi-view data. In Section 3, we introduce the
proposed method for a detailed description. In Section 4, we show the
basic experimental setup, and comparative analysis of experimental re-
sults. Finally, Section 5 concludes this paper and presents the directions
for future improvement.
2 
2. Related work

In this section, three related areas are introduced, i.e. multi-view
learning, graph convolutional network, and graph generation learning.

2.1. Multi-view learning

Multi-view learning is prevalent across diverse fields, which re-
quires multiple observations to obtain the complete information. The
downstream tasks in multi-view learning are mainly categorized into
clustering and classification. Clustering is an unsupervised learning
technique where the goal is to group a set of instances into clusters
based on their similarities (Borlea et al., 2017). Cai et al. (2024)
presented a representative clustering method applied to the unbal-
anced incomplete multi-view field. While, classification is a supervised
learning technique where the goal is to assign predefined labels to
new data points based on a model trained (Yan et al., 2024). How-
ever, obtaining sufficient supervision information presents challenges
in terms of the time and manpower required (Kilic et al., 2023). Due
to the challenges associated with acquiring supervised information,
semi-supervised learning has been developed as a viable approach to
address this deficiency (Tan et al., 2014). In this context, the methods of
semi-supervised classification in multi-view data hold great importance
and practical value, especially methods using neural networks (Chiang
et al., 2014). Jia et al. (2020) comprehensively exploited the consensus
and complementary properties as well as learning both shared and
specific representations by employing the shared and specific repre-
sentation learning network. Wang, Zhao et al. (2023) introduced a
cross-view consistency strategy which will lead to a stable training pro-
cess. Besides, some researchers have tried to apply Graph Convolutional
Network (GCN) to multi view semi-supervise and take results. Cheng
et al. (2021) developed GCN with clustering on graph-structured data to
improve the robustness in multi-view attributes. Yao et al. (2022) con-
ducted a theoretical analysis which effectively addressed the limitations
of GCN in accurately assessing the importance of multi-view topologies.
Their proposal to enhance GCN with an attention mechanism allowed
for the assignment of varying degrees to different topologies, thereby
resulting in performance improvements.
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2.2. Graph convolutional network

Graph Convolutional Network (GCN) was originally introduced by
Kipf and Welling (2017), with the aim of enhancing semi-supervised
classification performance. The rule of GCN is formulated as

𝐇(𝑙+1) = 𝜎(�̃�− 1
2 �̃��̃�− 1

2 𝐇(𝑙)𝐖(𝑙)), (1)

where 𝐇(𝑙) and 𝐇(𝑙+1) are the input data and output data of the 𝑙−th
graph convolutional layer. Here, 𝜎(⋅) denotes a replaceable activation
function, and �̃� = 𝐀+ 𝐈 represents the self-connection adjacency matrix
for any 𝑙 ∈ [𝑙]. And, �̃�𝑖𝑖 =

∑

𝑗 �̃�𝑖𝑗 for any 𝑖 ∈ [𝑁], and 𝐖(𝑙) is a learnable
weight matrix.

The promising capability of GCN is based on its ability to con-
currently aggregate feature and spatial information (Pozna & Precup,
2012). This feature allows for the analysis of concealed relationships
among instances, ultimately aiding in the development of a targeted,
discerning representation for a specific task. Due to the remarkable
effectiveness of GCN, numerous extensions and variants have exhib-
ited notable performance gains. Li et al. (2018) suggested that graph
convolution within the GCN represents a specific form of Laplacian
smoothing. They subsequently proposed enhancements to the GCN
model for semi-supervised learning, offering profound insights into un-
derstanding the GCN framework. Chen et al. (2018) interpreted graph
convolution as an integral transformation of embedding functions with
respect to probability measures. Utilizing Monte Carlo methodology,
they implemented a systematic approach for accurate estimation of
integrals, implementing a batched training procedure called FastGCN.

However, applying GCN to individual views and then combining
he outputs with a multi-view approach inadequately harnesses the

interrelationships among views. To address this problem, Khan and
lumenstock (2019) pioneered the use of subspace analysis to combine
ultiple views and derived the relationships between them before

employing GCN on the integrated representation. Nevertheless, their
approaches conflated diverse topologies in multi-view data as manifes-
tations of identical relationships, neglecting the advantages of utilizing
heterogeneous information. Additionally, Wang et al. (2021) discov-
ered that sparse regularizer learning could be likened to acquiring
a parameterized activation function. They developed a differentiable
and reusable neural network to dynamically learn data-driven sparse
regularizers. This approach aims to facilitate the learning of sparse rep-
resentations for tasks such as multi-view clustering and semi-supervised
classification. With the problem of over-smoothing, Chen et al. (2020)
mployed two techniques: initial residuals and identity mapping, and
uccessfully demonstrated their effectiveness through theoretical and
mpirical evidence. Huang et al. (2024) presented a framework that
tilizes a diffusion map to obtain geometric information in multiple

views. In order to leverage the benefits of GCN, Li et al. (2020)
ntroduced a multi-view semi-supervised learning model. This model
ffectively integrates graph information from multiple views by incor-

porating combined Laplacian matrices. This method brings together the
principles of co-training, spectral graph information, and the expressive
ature of neural networks into a unified framework.

To reduce complexity computation, Wu et al. (2019) introduced a
implified graph convolutional network, which involves the gradual
emoval of non-linearities and consolidation of weight matrices be-

tween adjacent layers. This simplified approach results in a significant
speedup of up to two orders of magnitude. Chen et al. (2023) performed
a spectral rotation fusion method to obtain a common graph matrix
at a feature level. Wu et al. (2024) constructed a special GCN frame-

ork to distill node features, with the help of Laplacian embedding.
owever, current GCN models have shown satisfying performance with

ingle-view graph data, extending GCN to multi-view data remains a
ignificant challenge. Meanwhile, most GCN models follow a conven-
3 
Table 1
Commonly used notations with their descriptions.

Notations Descriptions

{𝐗(𝑣) ∈ R𝑁×𝐷𝑣 }𝑉𝑣=1 Multi-view data of 𝑉 views, 𝑁 samples and 𝐷𝑣 features.
𝐘𝛺 The training label matrix by the label index set 𝛺.
𝐒(𝑣) The affinity matrices of each view data.
N𝑞 (𝑣) The set of 𝑘-hop nodes away from node 𝑣.
𝐏(𝑣) The transition possibility matrix for the 𝑣th view data.
S𝑒𝑑 𝑔 𝑒 The set of affinity matrices from edge sampling.
S𝑝𝑎𝑡ℎ The set of affinity matrices from path sampling.

tional approach to constructing graphs, which may limit their ability
to explore more comprehensive information.

2.3. Graph generation learning

Graph generation is a successful strategy for graph learning with
GCN. Two major paradigms have been developed in the context of
graph generative models. The first category is graph generation with
neural networks independently. Representative examples of this model
include the variational auto-encoder (VAE) model for sequentialized

olecule graphs (Gomez-Bombarelli et al., 2018). For instance, Liu
et al. (2018) made a graph-structured variational auto-encoder model
y opting to generate graphs sequentially. With the help of VAE, Jiang

et al. (2024) obtained a latent space harnessing the representations of
the essential views on graphs, attributes, and structures. These models
create the individual entries in the graph adjacency matrix (i.e., edges)
ndependently based on VAE. Although these methods enhance effi-
iency and allow for parallelization, it is still highly computationally
fficient.

Another strategy involves the adaptation of traditional classifiers to
create graphs. One of the most commonly classifiers is the 𝑘-nearest
neighbors (𝑘NN), which achieved promising results defined as:

𝐀(𝑣)
𝑖𝑗 =

{

1, 𝐱(𝑣)𝑖 ∈ 𝑘(𝐱
(𝑣)
𝑗 ) or 𝐱(𝑣)𝑗 ∈  (𝐱(𝑣)𝑖 ),

0, otherwise,
(2)

where 𝐀(𝑣)
𝑖𝑗 is the (𝑖, 𝑗)−the element of the 𝑣th view adjacency matrix,

𝐱(𝑣)𝑖 denotes the 𝑖th row vector of 𝐗(𝑣), and 𝑘(𝐱
(𝑣)
𝑗 ) represents the

nearest neighbors of 𝐱(𝑣)𝑖 . Li et al. (2021) introduced a technique
that constructs an intrinsic similarity graph in a spectral embedding
space rather than the original feature space. Wu, Xie et al. (2020)
developed a method to learn the view-specific affinity matrix using
the projection map and its intrinsic tensor through low-rank tensor
approximation. They also integrated these conditions to jointly learn
the optimal affinity matrix. Although current methods for constructing
multi-view graphs show promise, they still face challenges in effectively
integrating both consistency and complementarity from multi-view
graphs. This limitation results in constructing graphs that lack sufficient
informativeness.

In this paper, we assume the graph is a kind of state transition
matrix. Afterward, we obtain adjacency graphs for each view using
edge sampling or path sampling methods, respectively. With the use
of the maximum likelihood similarity method, the final graph can
omprehensively evaluate the data information of different views. In
he end, the final obtained graph could be placed into any GCN-based
odel, where GCN is used as the backbone classifier.

3. The proposed method

In order to clarify the model formulation and optimization pro-
cedure, the commonly used notations are summarized in Table 1.
Then, we will elaborate on the problem formulation and optimization
procedure of the proposed method.
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3.1. Problem formulation

Given multi-view data  = {𝐗(𝑣),𝐘𝛺}𝑉𝑣=1 associated with the label
index set 𝛺, multi-view semi-supervised classification aims to predict
test samples using very limited labels. Most of the existing works regard
the multi-view semi-supervised classification problems as multi-source
fusion problems, including data-level early fusion, feature-level middle
fusion, and decision-level late fusion. These fusion approaches can be
roughly categorized as discriminative methods. In contrast, we attempt
to provide a new perspective of generative models for this type of
problem. In particular, these problems are viewed as label propagation
problems on a generative graph guided by multi-scale structure priors.

Definition 1 (Structure-Aware Embedding You, 2021). For v ∈ V, the
node embedding ℎ𝑣 = 𝑓𝑣(𝑣) is structure-aware if there exists a mapping
of up to 𝑞-hop network neighborhood of node 𝑣. That is, there exists a
function 𝑔(⋅) satisfying ℎ𝑣 = 𝑔(N1(𝑣),… ,N𝑞(𝑣)), where N𝑘(𝑣) is the set
of 𝑘-hop nodes away from node 𝑣 for all 𝑘 ∈ [𝑞].

As it tells in Definition 1, we attempt to generate an exact graph un-
der the guidance of multi-scale structure-aware embeddings. In a multi-
view learning environment, in order to more accurately characterize
the sample, it will be observed from different views, i.e., sampling.
Each observation provides a different piece of information. Accord-
ingly, the following two types of sampling methods are utilized to
discretize the latent probability space. The approaches for constructing
the state transfer matrix of a Markov chain can be categorized into two
types: edge sampling and path sampling. The detail definitions of these
approaches are presented as follows:

Edge Sampling. [Based on the distance or similarity among in-
tances in feature space, the state transition of each node can be
ampled] Denote the set of sampled edges as S𝑒𝑑 𝑔 𝑒 = {(𝑢𝑖, 𝑣𝑖)}𝑒𝑖=1 =
{𝐒(1),𝐒(2),… ,𝐒(𝑣)}.

Path Sampling. [Based on the path among instances in feature
pace, the state transition of each nodes can be sampled] Denote the
et of sampled paths as S𝑝𝑎𝑡ℎ = {𝑢𝑗1, 𝑢

𝑗
2,… , 𝑢𝑗𝑚𝑗

}𝑝𝑗=1 = {𝐒(1),𝐒(2),… ,𝐒(𝑣)}.

3.2. Optimization methodology

Assuming an unobserved hidden graph 𝑔 , its observed state set
is S𝑒𝑑 𝑔 𝑒 = {(𝑢(𝑖), 𝑣(𝑖))}𝑒𝑖=1 from edges or S𝑝𝑎𝑡ℎ = {p𝑗 ≐ 𝑢(𝑗)1 𝑢(𝑗)2 ⋯ 𝑢(𝑗)𝑡𝑗

}𝑠𝑗=1
rom paths sub-graphs. From the perspective of Markov chain, it is to
ind a transition probability matrix 𝐀𝑔 as an unknown joint probability
istribution such that the sampling S𝑒𝑑 𝑔 𝑒 or S𝑝𝑎𝑡ℎ have the highest joint
robability. Naturally, the resultant transition probability matrix 𝐀𝑔
orresponds to the adjacency matrix of a graph. Here, 𝐀𝑔 acts as a latent
ariable to be optimized.
Graph Generation from Edge Sampling. Given the sampled edge

et S𝑒𝑑 𝑔 𝑒 = {(𝑢(𝑖), 𝑣(𝑖))}𝑒𝑖=1, we aim to find the graph adjacency matrix
𝑔 for which the observed data S𝑒𝑑 𝑔 𝑒 has the highest joint probability.
he joint density at the observed edge samples S𝑒𝑑 𝑔 𝑒 = {(𝑢(𝑖), 𝑣(𝑖))}𝑒𝑖=1
beying the probability distribution parameterized by 𝐀𝑔 is given as

(S𝑒𝑑 𝑔 𝑒;𝐀𝑔) = 
(

X1 = (𝑢(1), 𝑣(1)),… ,X𝑒 = (𝑢(𝑒), 𝑣(𝑒));𝐀𝑔
)

, (3)

where X𝑖 is a random variable obeying the distribution 𝐀𝑔 , i.e., X𝑖 ∼ 𝐀𝑔
for any 𝑖 ∈ [𝑒]. For the assumption of independent and identically
distributed random variables, (S𝑒𝑑 𝑔 𝑒;𝐀𝑔) could be the product of
univariate density functions, i.e.,

(S𝑒𝑑 𝑔 𝑒;𝐀𝑔) =
𝑒

∏

𝑖=1

(

X𝑖 = (𝑢(𝑖), 𝑣(𝑖));𝐀𝑔
)

. (4)

The optimal generative graph adjacency matrix 𝐀𝑔 can be obtained by
olving the following optimization problem

max
𝐀𝑔∈R𝑁×𝑁

(S𝑒𝑑 𝑔 𝑒;𝐀𝑔) s.t. 𝐀𝑔𝟏 = 𝟏,𝐀𝑔 ≥ 𝟎, (5)

where 𝟏 ∈ R𝑁×1 is a column vector whose entries are all equal to one.
Here, the constraint 𝐀 ≥ 𝟎 ensures the non-negativity, and 𝐀 𝟏 = 𝟏
𝑔 𝑔

4 
guarantees that the sum of each row in 𝐀𝑔 is equal to one. Both
onstraints make sure that 𝐀𝑔 is a valid probability distribution as well

as a valid graph generation. By minimizing the negative log-likelihood
and constructing the Lagrange function (𝐀𝑔 ,𝝀) as

(𝐀𝑔 ,𝝀) = −
𝑒
∑

𝑖=1
ln
(


(

X𝑖 = (𝑢(𝑖), 𝑣(𝑖));𝐀𝑔
))

+ 𝝀⊤(𝐀𝑔𝟏 − 𝟏), (6)

where 𝝀 = [𝝀1;⋯ ;𝝀𝑁 ] ∈ R𝑁×1 is a Lagrange multiplier. The method
f Lagrange multipliers indicates that the optimal solution is attained
hen all partial derivatives are equal to zero. Note that 

(

X𝑖 = (𝑢(𝑖),
𝑣(𝑖));𝐀𝑔

)

= [𝐀𝑔]𝑢(𝑖)𝑣(𝑖) . Taking derivatives of (𝐀𝑔 ,𝝀) with respect to 𝐀𝑔
nd 𝝀, we know

⎧

⎪

⎨

⎪

⎩

𝜕(𝐀𝑔 ,𝝀)
𝜕[𝐀𝑔 ]𝑗 𝑘 = −∑𝑒

𝑖=1

∑

𝑗=𝑢(𝑖) ,𝑘=𝑣(𝑖)

1
[𝐀𝑔 ]𝑗 𝑘 + 𝝀𝑗 ,

𝜕(𝐀𝑔 ,𝝀)
𝜕𝝀 = 𝐀𝑔𝟏 − 𝟏.

(7)

Setting 𝜕(𝐀𝑔 ,𝝀)
𝜕𝐀𝑔

= 𝟎 and 𝜕(𝐀𝑔 ,𝝀)
𝜕𝝀 = 𝟎, we obtain the optimal 𝐀∗

𝑔 ∈ R𝑁×𝑁

and 𝝀∗ ∈ R𝑁×1 as
⎧

⎪

⎨

⎪

⎩

[𝐀∗
𝑔]𝑗 𝑘 =

∑𝑒
𝑖=1 𝛿(𝑢

(𝑖)=𝑗 ,𝑣(𝑖)=𝑘)
∑𝑁

𝑘=1
∑𝑒

𝑖=1 𝛿(𝑢
(𝑖)=𝑗 ,𝑣(𝑖)=𝑘) ,

[𝝀∗]𝑗 =
∑𝑁

𝑘=1
∑𝑒

𝑖=1 𝛿(𝑢
(𝑖) = 𝑗 , 𝑣(𝑖) = 𝑘).

(8)

Here, 𝛿(𝑎, 𝑏) ∈ {0, 1} is a Boolean function, where 𝛿(𝑎, 𝑏) = 1 if both 𝑎
and 𝑏 are true; and 𝛿(𝑎, 𝑏) = 0 otherwise.

Graph Generation from Path Sampling. Denote the sampled path
set as S𝑝𝑎𝑡ℎ = {p𝑖 ≐ 𝑢(𝑖)1 𝑢(𝑖)2 ⋯ 𝑢(𝑖)𝑡𝑖 }

𝑠
𝑖=1, where 𝑠 is the number of paths

and 𝑡𝑖 is the length of the path p𝑖. Accordingly, we aim to learn a
raph adjacency matrix 𝐀𝑔 from the given path set S𝑝𝑎𝑡ℎ. Likewise, it is
xpected that the joint probability would be maximized, i.e,

(S𝑝𝑎𝑡ℎ;𝐀𝑔) = 
(

X1 = p1,… ,X𝑠 = p𝑠;𝐀𝑔
)

, (9)

where X𝑖 is a random variable obeying the distribution 𝐀𝑔 , i.e., X𝑖 ∼ 𝐀𝑔
for any 𝑖 ∈ [𝑠]. Furthermore, we assume that the random variable set
{X𝑖}𝑠𝑖=1 a sequence of independent, identically distributed (IID) random
ata points, then (S𝑝𝑎𝑡ℎ;𝐀𝑔) could be the product of univariate density

functions, i.e.,

(S𝑝𝑎𝑡ℎ;𝐀𝑔) =
𝑠

∏

𝑖=1

(

X𝑖 = p𝑖;𝐀𝑔
)

. (10)

Similar to graph generation from edge sampling, the optimal graph
adjacency matrix 𝐀𝑔 can be evaluated by solving the following opti-
mization problem

max
𝐀𝑔∈R𝑁×𝑁

(S𝑝𝑎𝑡ℎ;𝐀𝑔) s.t. 𝐀𝑔𝟏 = 𝟏,𝐀𝑔 ≥ 𝟎. (11)

Due to the high complicacy of the derivative of Eq. (11), we
minimize its negative log-likelihood function and define the Lagrange
function (𝐀𝑔 ,𝝀) as

(𝐀𝑔 ,𝝀) = −
𝑠
∑

𝑖=1
ln
(


(

X𝑖 = 𝑢(𝑖)1 𝑢(𝑖)2 ⋯ 𝑢(𝑖)𝑡𝑖 ;𝐀𝑔

))

+ 𝝀⊤(𝐀𝑔𝟏 − 𝟏), (12)

where 𝝀 = [𝝀1;⋯ ;𝝀𝑁 ] ∈ R𝑁×1 is a Lagrange multiplier. We take
derivatives of (𝐀𝑔 ,𝝀) with respect to 𝐀𝑔 and 𝝀, knowing
⎧

⎪

⎨

⎪

⎩

𝜕(𝐀𝑔 ,𝝀)
𝜕[𝐀𝑔 ]𝑗 𝑘 = −∑𝑠

𝑖=1
∑𝑡𝑖−1

ℎ=1

∑

𝑗=𝑢(𝑖)ℎ ,𝑘=𝑢(𝑖)ℎ+1

1
[𝐀𝑔 ]𝑗 𝑘 + 𝝀𝑗 ,

𝜕(𝐀𝑔 ,𝝀)
𝜕𝝀 = 𝐀𝑔𝟏 − 𝟏.

(13)

Setting 𝜕(𝐀𝑔 ,𝝀)
𝜕𝐀𝑔

= 𝟎 and 𝜕(𝐀𝑔 ,𝝀)
𝜕𝝀 = 𝟎, we obtain the optimal 𝐀∗

𝑔 and 𝝀∗

as
⎧

⎪

⎨

⎪

⎩

[𝐀∗
𝑔]𝑗 𝑘 =

∑𝑠
𝑖=1

∑𝑡𝑖−1
ℎ=1 𝛿(𝑢(𝑖)ℎ =𝑗 ,𝑢(𝑖)ℎ+1=𝑘)

∑𝑁
𝑘=1

∑𝑒
𝑖=1

∑𝑡𝑖−1
ℎ=1 𝛿(𝑢(𝑖)ℎ =𝑗 ,𝑢(𝑖)ℎ+1=𝑘)

,

[𝝀∗]𝑗 =
∑𝑁

𝑘=1
∑𝑠

𝑖=1
∑𝑡𝑖−1

ℎ=1 𝛿(𝑢
(𝑖)
ℎ = 𝑗 , 𝑢(𝑖)ℎ+1 = 𝑘).

(14)
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3.3. Training loss and optimization algorithm

Aligned to most GCN models, the cross-entropy function is em-
loyed as an objective function to obtain the effective information flow
n our proposed model,

 = −
∑

𝑙∈𝐿

𝐶
∑

𝑐=1
𝐘𝑙 𝑐 ln �̂�𝑙 𝑐 , (15)

where 𝑌𝐿𝑐 is the 𝑐th label of labeled space and �̂� = sof t max(𝐙) repre-
ents the predicted class labels. Additionally, 𝐘 is the matrix generated
rom the real label space of 𝐿, and 𝐶 stands for the total number of
abels in the dataset.

The time complexity of the proposed method mainly consists of two
modules: graph generation and graph convolution construction. On one
hand, when given sampling results, the computational complexity of
the former graph generation consumes (𝑁2) on edge sampling and
(𝑝𝑁2) on path sampling, where 𝑁 and 𝑝 are the sample number and
he maximum length of path. On the other hand, that of the latter graph
onvolution for each view costs (||𝑁 𝐷 𝐻), where 𝐷, 𝐻 , and ||

represents the numbers of input features, hidden channels, and graph
dges, respectively. Considering that the number of hidden features is
ften much smaller than that of input features, view number, and path
ength are much smaller than sample number, i.e., 𝐻 ≪ 𝐷, 𝑉 ≪ 𝑁 ,
𝑝 ≪ 𝑁 , therefore, the total time complexity requires (𝑁2 +𝑁 𝐷||).

Gathering the multi-scale graph generation module and the label
propagation module, the procedures are summarized in Algorithm 1.

Algorithm 1 Multi-Scale Graph Generation based multi-view semi-
supervised classification (MSGG)
Require: {𝐗(𝑣),𝐘𝛺}𝑉𝑣=1: Multi-view data with label index set 𝛺 and 𝑉

views;
𝑚𝑎𝑥𝐼 𝑡𝑒𝑟: The maximum number of sampling iterations.

Ensure: {�̂�𝑖}𝑖∉𝛺: Predictive labels of test samples.
1: // Discrete-time Markov chain Construction
2: for 𝑣 = 1 to 𝑉 do
3: Compute the 𝑣-th Markov chain (𝑣) ≐ ( (𝑣),𝐏(𝑣)) with the state

space  (𝑣) and transition probability 𝐏(𝑣);
4: end for
5: // Multi-Scale Graph Generation
6: Initialize the set of sampling edges as S𝑒𝑑 𝑔 𝑒 = ∅ and the set of

sampling paths S𝑝𝑎𝑡ℎ = ∅;
7: for 𝐼 𝑡𝑒𝑟 = 1 to 𝑚𝑎𝑥𝐼 𝑡𝑒𝑟 do
8: if Edge sampling then
9: Randomly sampling an edge (𝑢, 𝑣) from 𝑉 Markov chains and

add it to S𝑒𝑑 𝑔 𝑒 with Eq. (3);
10: else if path sampling then
11: Randomly sampling a path 𝑢1𝑢2 ⋯ 𝑢𝑚 from 𝑉 Markov chains

and add it to S𝑝𝑎𝑡ℎwith Eq. (9);
12: end if
13: end for
14: Evaluate the generative graph using maximum likelihood estima-

tion, and denote the generated transition probability matrix as 𝐀𝑔
with Eq. (5) or Eq. (11);

15: // Label Propagation on Graphs
16: for 𝑣 = 1 to 𝑉 do
17: Calculate the 𝑣-th feature representation 𝐇(𝑣) by a multi-layer

perceptron, given as 𝐇(𝑣) = MLP𝚯(𝐯) (𝐗(𝑣)) with Eq.(15);
18: end for
19: Propagate the labels of test samples using some graph backbone

network on the graph 𝑔 = (𝐇,𝐀𝑔) where 𝐇 = [𝐇(1),⋯ ,𝐇(𝑉 )],
denoted as �̂� = GNN(𝑔 ,𝐘𝛺);

20: Return The predicted label set {�̂�𝑖}𝑖∉𝛺 with �̂�𝑖 = ar g max𝑗∈[𝐶] �̂�𝑖𝑗 .
5 
Table 2
A brief introduction to all tested multi-view dataset.

Datasets # Samples # Views Feature distributions # Classes

ALOI 1079 4 64/64/77/13 10
BBCsports 544 2 3,183/3,203 5
GRAZ02 1476 6 512/32/256/500/500/680 4
NGs 500 3 2000/2000/2000 5
NoisyMNIST 15,000 2 784/784 10
Wisconsin 265 2 1703/221 5

4. Experiment

In this section, the proposed framework is compared with state-
of-the-art methods on six real-world benchmark datasets. At first, the
etting of the experiment is described. The demonstrated performance
f the proposed method is exemplified. Additionally, comprehensive
xperiments are conducted to analyze its parameter sensitivity. Fi-
ally, the performance visualization is carried out to demonstrate the
erformance and effectiveness of the proposed framework.

4.1. Experimental settings

The selected real-world datasets which have different labels ob-
ained from different views are commonly used in the field of multi-

view. The detail information of these datasets is listed:

• ALOI1 is an image dataset which contains objects that are taken
under varied light conditions or rotation angles. Its features in-
clude 64-D RGB color histograms, 64-D HSV color histograms,
77-D color similarities, and 13-D Haralick features.

• BBCsports2 is a collection of 5 distinct types of sports websites
sourced from BBC. This dataset includes two unique perspectives
within its classification framework.

• GRAZ023 is an image dataset with different four classes: bicycles,
people, cars, and a class that does not contain these objects. Its
feature space is extracted from 6 types, i.e., SIFT, SURF, GIST,
LBP, PHOG, and WT.

• NGs4 is a Newsgroup dataset which is a collection of approxi-
mately 20,000 newsgroup documents. NGs consists of 500 news-
group documents in 5 classes. Each document is pre-processed
with three different methods to create feature space from three
views.

• NoisyMNIST5 is generated by adding the white Gaussian noise,
the motion blur, and a combination of additive white Gaussian
noise and reduced contrast to MNIST dataset.

• Wisconsin6 serves as a good benchmark for testing the effective-
ness of graph-based algorithms in classifying nodes. Wisconsin is
part of the ‘‘WebKB’’ collection.

The detailed information of these datasets about a statistical sum-
ary is presented in Table 2, including the numbers of views, features,

and classes.

4.2. Compared methods

The performance of the framework is proved with the six state-of-
the-art methods. The detailed information about these algorithms is
listed as follows:

1 http://elki.dbs.ifi.lmu.de/wiki/DataSets/MultiView
2 http://mlg.ucd.ie/datasets/segment.html.
3 https://github.com/EricWang-CS/Dataset.
4 http://lig-membres.imag.fr/grimal/data.html.
5 http://yann.lecun.com/exdb/mnist/.
6 https://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/.

http://elki.dbs.ifi.lmu.de/wiki/DataSets/MultiView%20
http://mlg.ucd.ie/datasets/segment.html
https://github.com/EricWang-CS/Dataset
http://lig-membres.imag.fr/grimal/data.html
http://yann.lecun.com/exdb/mnist/
https://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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Table 3
Accuracy and F1-score (mean% and standard deviation%) of all compared semi-supervised classification methods with 10% labeled samples.
Hyphen (–) denotes the out-of-memory error. The best performance is highlighted in bold and the second best is underlined.

Metric Method\Dataset ALOI BBCsports GRAZ02 NGs NoisyMNIST Wisconsin

ACC

Co-GCN 79.97 ± 1.98 86.31 ± 2.54 40.53 ± 2.56 87.31 ± 3.48 88.90 ± 0.12 69.41 ± 6.10
GCN-Fusion 86.40 ± 1.51 91.12 ± 1.65 50.76 ± 0.74 82.18 ± 2.07 – 58.32 ± 4.40
ERL-MVSC 87.88 ± 1.30 90.41 ± 1.09 54.09 ± 1.29 82.18 ± 2.20 – 54.06 ± 8.08
DSRL 60.65 ± 5.07 90.91 ± 0.85 48.11 ± 1.04 74.49 ± 2.35 – 59.67 ± 9.95
IMvGCN 64.79 ± 0.80 83.53 ± 0.84 37.52 ± 0.68 85.82 ± 0.70 80.84 ± 0.09 54.46 ± 1.25
IHGCN 69.27 ± 6.40 92.99 ± 0.21 46.60 ± 0.54 94.44 ± 0.14 90.09 ± 0.02 69.08 ± 0.57

MSGG-ES 94.84 ± 0.00 94.91 ± 0.00 55.00 ± 0.00 92.67 ± 0.00 90.26 ± 0.00 73.95 ± 0.00
MSGG-PS 95.48 ± 0.00 90.59 ± 0.00 51.89 ± 0.00 95.24 ± 0.00 90.45 ± 0.00 68.40 ± 0.16

F1

Co-GCN 79.13 ± 2.44 84.99 ± 3.39 38.94 ± 1.50 87.23 ± 3.57 88.38 ± 0.26 41.77 ± 6.73
GCN-Fusion 86.51 ± 1.54 91.24 ± 1.88 50.48 ± 0.73 81.82 ± 2.17 – 39.66 ± 4.71
ERL-MVSC 88.42 ± 1.06 90.28 ± 1.58 54.39 ± 0.00 82.35 ± 2.20 – 46.97 ± 23.33
DSRL 91.00 ± 0.79 93.75 ± 0.43 48.64 ± 1.05 74.08 ± 2.90 – 27.60 ± 9.37
IMvGCN 63.86 ± 1.28 80.39 ± 0.88 36.21 ± 0.72 85.84 ± 0.71 79.96 ± 0.09 43.24 ± 0.71
IHGCN 64.44 ± 8.19 92.54 ± 0.18 42.21 ± 1.04 94.43 ± 0.14 89.97 ± 0.02 36.37 ± 0.87

MSGG-ES 94.89 ± 0.00 94.65 ± 0.00 54.22 ± 0.00 92.53 ± 0.00 90.11 ± 0.00 52.40 ± 0.00
MSGG-PS 95.47 ± 0.00 91.69 ± 0.00 51.10 ± 0.00 95.25 ± 0.00 90.30 ± 0.00 48.60 ± 0.17
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• Co-GCN (Li et al., 2020): This method is a GCN-based method
whose strategy employs the graph information from heteroge-
neous views with an adaptive combined graph Laplacian matrix.

• GCN-Fusion: This is a traditional graph convolutional network
that deals with semi-supervised node classification tasks. In the
experiment, the average adjacency matrix is acquired during
graph convolutions.

• ERL-MVSC (Huang et al., 2021): This approach constructs a linear
regression model to deduce view-specific embedding regularizers
and automatically train weights of various perspectives.

• DSRL (Wang et al., 2021): This model implements adaptive learn-
ing of data-driven sparse regularizers under deep learning models.

• IMvGCN (Wu et al., 2023): This method combines the recon-
struction error and Laplacian embedding to formulate multi-view
learning.

• IHGCN (Zou, Fang et al., 2024): This approach proposes an
implicit heterogeneous graph convolutional network to explore
heterogeneity among views.

These methods are competent for semi-supervised classification
asks. All compared algorithms are conducted with the default param-

eters. Notably, MVAR, WREG, ERL-MVSC, DSRL, IMvGCN, and IHGCN
are specifically designed for multi-view learning environments.

4.3. Experimental result

The proposed framework is compared against six models on six
multi-view benchmark datasets, utilizing 10% labeled samples for su-
pervision and the number of iterations for the training model was set
to 500. Two evaluation metrics are employed to demonstrate the clas-
sification performance. The first evaluation metric is accuracy (ACC),
which is widely used to calculate the performance of the model. Ad-
ditionally, the F1-score, which combines precision and recall, is in-
troduced to highlight the differences among models. The means and
standard deviations are recorded for all models. There is one more
point, each experiment will be repeated six times under the same
ettings. The numerical results on the ACC and F1-score of all compared
odels on six datasets are shown in Table 3.

By and large, the MSGG-PS can outperform most comparison algo-
rithms in three datasets, while the MSGG-ES is less capable than it.
Specifically speaking, MSGG-PS achieves the best performance that has
a 60% probability of getting the best achievement. MSGG-ES can obtain
the best or second ranking achievement than other algorithms in 83.3%
atasets in terms of ACC and F1-score. Besides, MSGG-ES has the most
table performance than MSGG-PS, achieving decent performance on

ll datasets. Although, MSGG-PS has a weaker performance than other

6 
algorithms except in ALOI, HGs, and NoisyMNIST. Random walk is
robably the main reason for its poor effectiveness, and using other
ath sampling methods may improve the performance of this frame-

work. As a result, the framework of MSGG can defeat other GCN-based
odels.

4.4. Parameter sensitivity analysis

The effectiveness of hyper-parameter 𝐾 is investigated in this sub-
ection. The detailed results and analysis of the experiment are shown
s follows. The hyper-parameter 𝐾 is constrained within the range of
 to 15. The parameter analysis of MSGG on six datasets is shown
n Fig. 2. Specifically, the performance of edge sampling is shown in

Fig. 2.(a) and .(b), while the others demonstrate the performance of
path sampling. Based on the results from the aforementioned figure,
t can be visualized that the accuracy and F1-score of each dataset
xhibit similar trends both in MSGG-ES and MSGG-PS. With the two
ost representative datasets, 3Sources and NGs, the performance of

the framework improves as the hyper-parameter values increase until
eaching an optimal point. Subsequently, the performance begins to
ecline and fluctuate slightly as the value of the hyper-parameter
ontinues to increase.

The improvement in evaluation metrics can be ascribed to the
ncorporation of a larger number of neighbors, facilitating the ex-
loration of varied and enhanced structural and feature information.
evertheless, the subsequent decrease in evaluation metrics is caused
y over-smoothing. Exceeding the optimal threshold of neighbors leads
o a homogenization of information gathered across all nodes, thereby
iminishing the discriminative ability of the model and negatively
mpacting node classification. However, there are also cases where the
mpact of changes in hyper-parameter values on the performance of the
lgorithm on the NoisyMNIST dataset appears to be rather limited.

4.5. Performance visualization

A popular visualization tool, t-SNE (Van der Maaten & Hinton,
2008), is employed to showcase the effectiveness of various represen-
tation methods in the BBCSports dataset. The feature representations
are projected into 2D space with t-SNE, and the visualization results
are depicted in Fig. 3. Here we illustrate the visualization results of
Co-GCN, GCN-Fusion, ERL-MVSC, DSRL, IMvGCN, IHGCN, and MSGG,
where points with different colors indicate different classes. Particularly
oteworthy is that, the distribution of node representations within the

same cluster is more concentrated, whereas different clusters are more
distinctly separated. The visualization of MSGG-ES and MSGG-PS are
better compared to other algorithms. While a few outliers still persist,
their presence is substantially reduced, leading to tighter clustering
compared to other algorithms. Collectively, the framework MSGG has
better performance for feature representation.
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Fig. 2. Parameter analysis of MSGG with hyper-parameter 𝐾 on six datasets.
Fig. 3. Visualization results of the learned graph representations of compared algorithms on the BBCSports dataset.
5. Conclusion

In this paper, we designed a graph generation framework, which uti-
lized maximum likelihood in multi-view data, and deployed it in a semi-
supervised classification task. Existing graph generation models failed
to fully leverage the wealth of multi-view information available and
obtain a high quality graph. Therefore, the proposed model incorpo-
rated maximum likelihood to better explore the information present in
multi-view data. First, this framework can generate graphs through two
sampling methods, namely edge sampling and path sampling. Then, in
the edge sampling step, the basic adjacency matrix is considered as the
output of the sampling process, while the random walk is performed
7 
during the path sampling step in the proposed model. Finally, the pro-
posed framework generated a graph by maximum likelihood estimation
and utilized GCN to train the results.

Therefore, our work can be further improved in these directions.
First, it will be a remarkable endeavor that integrates the proposed
framework with other works. Then, graph generation rarely has an
effective framework work to address multi-view learning. Effectively
leveraging information from various perspectives for graph generation
can significantly enhance model performance. Finally, in the proposed
model, the adjacency matrix fails to change once it is constructed.
It would maintain a more efficient transmission of sample informa-
tion. Therefore, it would be interesting to investigate more efficient
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graph generation methods without external information in multi-view
learning.
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