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Abstract 

Background Achieving precise cancer subtype classification is imperative for effective prognosis and treatment. 
Multi-omics studies, encompassing diverse data modalities, have emerged as powerful tools for unraveling the com-
plexities of cancer. However, owing to the intricacies of biological data, multi-omics datasets generally show variations 
in data types, scales, and distributions. These intractable problems lead to challenges in exploring intact representa-
tions from heterogeneous data, which often result in inaccuracies in multi-omics information analysis.

Results To address the challenges of multi-omics research, our approach DeepMoIC presents a novel framework 
derived from deep Graph Convolutional Network (GCN). Leveraging autoencoder modules, DeepMoIC extracts com-
pact representations from omics data and incorporates a patient similarity network through the similarity network 
fusion algorithm. To handle non-Euclidean data and explore high-order omics information effectively, we design 
a Deep GCN module with two strategies: residual connection and identity mapping. With extracted higher-order 
representations, our approach consistently outperforms state-of-the-art models on a pan-cancer dataset and 3 cancer 
subtype datasets.

Conclusion The introduction of Deep GCN shows encouraging performance in terms of supervised multi-omics 
feature learning, offering promising insights for precision medicine in cancer research. DeepMoIC can potentially be 
an important tool in the field of cancer subtype classification because of its capacity to handle complex multi-omics 
data and produce reliable classification findings.
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Introduction
Cancer, an extensive spectrum of diseases, can virtu-
ally manifest in any organ or tissue within the human 
body [1]. The identification of cancer subtypes and the 
prognosis estimation for patients are key aspects of 
cancer research. Due to the recent rapid progress in 
high-throughput biomedical technology, diverse types 
of omics data have been collected with unprecedented 
levels of detail, encompassing diverse molecular pro-
cesses such as Copy Number Variation, mRNA expres-
sion, and DNA methylation. Although individual omics 
data can capture specific aspects of biological complex-
ity, a greater comprehension of the complex biological 
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processes is made possible by the integration of diverse 
omics data types [2]. In particular, current research 
has provided compelling evidence that the integration 
of data from diverse omics technologies considerably 
enhances the performance of forecasting clinical results 
compared to using only one type of omics data [3–6]. 
In light of these advancements, there arises a necessity 
for innovative integrative analysis methods adept at 
harnessing the correlation and additional details inher-
ent in multi-omics data.

Navigating the complexities of multi-omics stud-
ies is inherently challenging, owing to the diversity of 
data types, scales, and distributions, which are often 
characterized by numerous variables and limited sam-
ples. Additionally, biological datasets may introduce 
unwanted complexity and noise, potentially contain-
ing errors stemming from measurement inaccuracies 
or inherent biological variability. To address this chal-
lenge, numerous methods and strategies based on 
deep learning have emerged in recent years to extract 
meaningful information and integrate diverse omics 
data into coherent models [7]. With the advancement 
of personalized medicine, meticulously annotated data-
sets that provide comprehensive details about sample 
phenotypes or traits are becoming increasingly accessi-
ble. A precise classifier for cancer molecular subtypes is 
essential for early-stage diagnosis, prognosis, and drug 
development. Consequently, supervised multi-omics 
integration models, which can identify disease-related 
biomarkers and predict outcomes in new samples, are 
gaining increasing popularity [3]. For instance, Lin 
et  al. [8] employed a type-specific encoding module 
to extract features from different data types, and com-
bined these features to predict breast cancer subtypes. 
Poirion et al. [9] utilize an autoencoder for dimension-
ality reduction to predict survival cancer subtypes with 
a deep learning framework. Moreover, the predominant 
focus of current cancer subtype identification methods 
revolves around unsupervised multi-omics data inte-
gration [10–12].

As an effective solution to the integration of multi-
omics data, Patient Similarity Network (PSN) was 
devised to integrate multi-omics data and construct 
interpretable models [13, 14]. To effectively process non-
Euclidean data with PSN, previous studies had utilized 
Graph Convolutional Network (GCN) [15], which could 
directly operate on graphs and discover underlying cor-
relations among samples, and has gained popularity in 
the domain of bioinformatics [6, 16–18]. For example, 
Dai et al. [19] employed a sample similarity network and 
a residual GCN for cancer subtype identification. Li et al. 
[20] designed a multi-omics data fusion method incorpo-
rating a two-layer GCN to process the no-Euclidean data 

similarity network for cancer subtypes classification and 
analysis.

In spite of the achievements of the aforementioned 
methods, most GCN-based methods only used shal-
low structures owing to the over-smoothing issue [21], 
which results in notorious performance when construct-
ing deep GCN frameworks. Nonetheless, a deep GCN 
is beneficial to discover remote nodes, and considerable 
studies have revealed the necessity of propagating infor-
mation to high-order neighbors in various bioinformatics 
fields, such as protein-phenotype associations predic-
tion [22], liver cancer diagnosis [23], and protein-ligand 
binding residue prediction [24]. In particular, owing to 
the complexity of multi-omics data, shallow GCNs may 
struggle with the higher-order feature exploration. Thus, 
with limited samples, adopting deeper networks becomes 
crucial to the improvement of multi-omics feature learn-
ing performance.

In summary, the existing methods, especially those 
graph-based multi-omics models, generally face the 
following challenges: (1) Neglecting the relationships 
between different omics data types; (2) Overlooking the 
incorporation of patient similarity; (3) Ignoring the high-
order relationships between omics data samples. Conse-
quently, to tackle these issues, we propose a multi-omics 
data integration approach, called DeepMoIC, for cancer 
subtype classification, as presented in Fig.  1. Initially, 
autoencoders are employed to extract latent embed-
ding representations from multi-omics data, providing 
a compact data representation across multiple omics 
modalities. Subsequently, a PSN is constructed using the 
similarity network fusion algorithm. To effectively han-
dle non-Euclidean data represented by the latent omics 
data representation and PSN, we design a Deep GCN for 
in-depth exploration of high-order information. To han-
dle the challenge of capturing high-order correlation of 
samples in multi-omics data, we implement two effective 
strategies: initial residual connection and identity map-
ping, which facilitate the propagation of omics infor-
mation to remote neighbors. The proposed method is 
trained and assessed on 4 benchmark datasets and com-
pared against other state-of-the-art methods in multi-
modal and multi-omics learning fields. The experimental 
results indicate that DeepMoIC consistently achieves sig-
nificant improvements across all datasets, suggesting its 
potential to provide deeper insights into clinical diagno-
sis and cancer subtype classification.

Methods
The proposed DeepMoIC comprises three main compo-
nents. First, multi-omics data are input into autoencoders 
to extract compact representations. Then, the similar-
ity network fusion method is applied to construct a PSN 
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structure. Finally, the Deep GCN module integrates the 
feature matrices and PSN for network training and can-
cer subtype prediction.

Autoencoder architecture
To cope with challenges posed by limited samples and 
high-dimensional genomic features in multi-omics data 
analysis, we first utilize a multi-layer autoencoder to 
reduce data dimensionality and computational cost. In 
detail, the i-th encoder that learns the compressed repre-
sentation Zi of multi-omics features is defined as

where Z(0)
i = Xi that denotes the i-th omics features, 

W
(l)
i  denotes the weight matrix, b(l)i  denotes the bias of 

the l-th layer and σ is the sigmoid activation function. 
Subsequently, we employ the decoder layers to learn a 
reconstructed representation, defined as

where X̃(l)
i  represents the rebuilt features. To minimize 

the reconstruction loss, we employ the Mean Square 
Error (MSE) loss function to quantify the difference 
between the rebuilt and the original feature matrices, 
defined as
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where n denotes the count of samples and L denotes the 
count of layers. Considering that the input data encom-
passes multiple data types and is represented by different 
features X1,X2, ...,XM , we assign varied weights to each 
omics data based on prior knowledge to underscore their 
impact to the model, with all weights summing up to one. 
Considering this, the loss function is formulated as

where M denotes the count of omics types with 
∑M

i=1 �i = 1 . Finally, we obtain the unique latent rep-
resentation extracted from multi-omics data with a 
weighted integration, i.e., Z =

∑M
i=1 �iZ

(L)
i .

Patient similarity network
In typical multi-omics data, establishing direct relation-
ships between samples is challenging due to the diver-
sity of biological information, especially when handling 
gene expression and protein levels. Existing omics data 
obtained through independent experiments or measure-
ments often lack inherent relationships between sam-
ples. Thus, constructing semantic corrections between 
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Fig. 1 The overall workflow of DeepMoIC, consisting of two main stages: a/b Utilizing AutoEncoder to extract features and constructing a patient 
similarity network (PSN) through the similarity network fusion algorithm, and c Deep GCN module to process the PSN and feature matrices 
for downstream tasks
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samples is essential for a comprehensive understanding 
of multi-omics data, especially when bridging the gap 
between diverse omics data.

In our work, we adopt a Similarity Network Fusion 
(SNF) algorithm [25] which is designed to build a simi-
larity network among patients based on various types 
of data. Specifically, for each data type, SNF algorithm 
first generates the patient similarity matrix and then 
constructs the corresponding patient adjacency matrix 
for each omics type. Finally, the algorithm combines 
different categories of patient similarity matrices to 
construct a fused graph.

Assume that there are n samples and M types of fea-
tures (such as mRNA, CNV, and DNA methylation). 
For the m-th data type, the scaled exponential similar-
ity matrix is computed by

where θ(xi, xj) denotes the Euclidean distance within 
samples xi and xj , µ is a hyperparameter, and δi,j is 
employed to address the scaling issue, which is computed 
by

where Ni denotes the set of xi ’s neighbors and mean(θ(xi, Ni)) 
denotes the mean distance from node xi to each neighbor. To 
calculate the fused matrix from different omics types, the sim-
ilarity matrix of all samples is calculated by

Subsequently, the similarity matrix K recording the k 
nearest neighbors is calculated by

Observe that matrix P encompasses the complete 
messages regarding the similarity of each sample to all 
others, while matrix K only represents the similarity 
to k most similar samples for each individual and k is 
set to 20 in our work. In the case of various data types 
( M > 2 ), different omics similarity matrices are fused 
by an iterative process, i.e.,
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where P(m)
t (m = 1, 2, ...,M) denotes results at the t-th itera-

tion from the m-th omics data, and the iteration process 
continues until the algorithm reaches convergence or 
the specified iteration budget. Finally, the PSN matrix is 
defined as

Construction of deep graph convolutional network
After obtaining the compressed intact node feature 
matrix Z ∈ R

n×d with AE and generating the PSN matrix 
P ∈ R

n×n through SNF algorithm, we construct a deep 
graph convolutional network module to effectively process 
the non-Euclidean data, aiming to learn latent representa-
tions. By harnessing the deep GCN, we elevate the capabil-
ity of multi-omics data to uncover intricate relationships. 
The multiple layers of deep GCN can facilitate the explo-
ration of high-order connectivity information, empowering 
the model to capture more nuanced representations and 
enhance predictive performance. Nevertheless, a primary 
problem of deep GCN is the over-smoothing issue, where 
node representations become excessively similar with the 
growing number of layers. This prevents the model from 
discovering high-order information in multi-omics data. To 
extend GCN into a deeper model, we employ two strate-
gies to tackle this challenge: initial residual connection [26] 
and identity mapping [27]. Then, we design the deep GCN 
module based on two strategies better to handle multi-
omics fusion data for different downstream tasks.

Incorporating the initial residual connection guaran-
tees that, despite stacking multiple layers, the eventual 
representation of each node keeps the information from 
the input layer in a fraction of α . The message-passing 
operation is formulated as

where α is a hyperparameter. Recall that 
L̃ = D̃

−1/2
ÃD̃

−1/2 , where Ã = A + I represents the adja-
cency matrix with additional self-connections, D̃ is the 
degree matrix of Ã and initially A = P.

While the initial residual connection provides partial 
relief from over-smoothing, the decline in performance 
persists as the model deepens. To address this issue, the 
identity matrix is introduced to the weight matrix, and 
the message-passing operation is formulated as
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where βl = log
(

�

l
+ 1

)

≈ �

l  when �
l
 is small enough, and 

� is a hyperparameter. Note that H(l) is the outcome of 
the previous layer and H(0) = Z . σ(·) is the activation 
function and W(l)

d  is a learnable weight matrix for the l-th 
layer. The factor β is strategically set to make sure that the 
decay of the weight matrix increases adaptively with the 
stacking of more layers.

Subsequently, we employ the aforementioned basic layer 
to construct a deep GCN, where each layer is structured in 
the following sequence: Graph Convolution → Batch Nor-
malization → ReLU → Dropout. Herein, Batch Normaliza-
tion [28] is employed to improve the stability of the model 
training, which standardizes inputs within each mini-batch 
and not only accelerates the convergence speed but also 
alleviates the issues of gradient vanishing and exploding.

The outcome of the last layer of deep GCN will be fed 
into a linear classifier, which will then be fed into the soft-
max layer to obtain the classification probability distribu-
tion for the loss function computation. To quantify the 
difference between the predicted results and the ground 
truth, we employ the cross-entropy loss function, i.e.,

where q is the count of training samples and c is the count 
of classes. If yic = 1 , the ground truth of the i-th node is 
c, and pic represents the predicted confidence of the i-th 
node belonging to the c-th class. The entire procedure is 
summed up in Algorithm 1.

Algorithm 1 Training Algorithm of DeepMoIC

Results
Data preparation
For the task of pan-cancer subtype classification, we 
leverage the TCGA Pan-cancer dataset [29], which inte-
grates RNA-seq and Copy Number Variation (CNV) 

(13)L = −
1

q

q
∑

i=1

C
∑

c=1

yiclog(pic),

dataset. The CNV dataset via GISTIC2 method consists 
of 10,845 samples, while the batch effect normalized 
RNA-seq dataset encompasses 11,060 samples. After 
filtering out missing data, the eventual TCGA Pan-can-
cer dataset comprises 9,664 samples from 28 distinct 
subtypes.

For the specific task of recognizing cancer sub-
types, we use 3 cancer subtype datasets. The BRCA 
dataset is used for breast invasive carcinoma PAM50 
subtype classification, which comprises 3 omics data 
types: mRNA, CNV, and Reverse-Phase Protein Array 
(RPPA), and encompasses 511 samples from 4 sub-
types: Luminal A, Luminal B, TNBC, and HER2(+). The 
KIPAN dataset is used for kidney cancer type classifica-
tion, which comprises 3 omics data types: DNA meth-
ylation, miRNA, and mRNA, and encompasses 707 
samples from 3 subtypes: KICH, KIRC, and KIRP. The 
LGG dataset is used for grade classification in glioma, 
which comprises 3 omics data types: DNA methyla-
tion, miRNA, and mRNA, and encompasses 524 sam-
ples from 2 subtypes: Grade 2 and Grade 3. To facilitate 
survival prediction tasks on the BRCA dataset, we also 
retrieve clinical information from the GDC Data Portal 
(https:// portal. gdc. cancer. gov/). In the experiment, 60% 
of the samples are randomly selected as the training set 
and the rest as the test set. The detailed dataset statis-
tics are provided in Table 1.

Cancer subtype classification
Several experiments are conducted to evaluate the per-
formance and efficacy of the proposed DeepMoIC. 
We compare our proposed method with 9 methods, 
including classical machine learning methods and state-
of-the-art deep learning methods. Specifically, Sup-
porting Vector Machine (SVM), Random Forest (RF), 
and K-Nearest Neighbor (KNN) are single-view base-
lines. Multi-view techniques have been demonstrated 

Table 1 Statistics of multi-omics datasets

Datasets Samples Features Subtypes

TCGA 9,664 gene expression (17,944) 28

CNV(17,944)

BRCA 511 mRNA (19,580) 4

CNV (19,273)

RPPA (223)

KIPAN 707 meth (2,000) 3

mRNA (2,000)

miRNA (472)

LGG 524 meth (2,000) 2

mRNA (2,000)

miRNA (548)

https://portal.gdc.cancer.gov/
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to possess the advantages of uncovering cross-talk pat-
terns and capturing the heterogeneity of samples in 
multi-omics data mining [30], attributed to which we 
compare them with two multi-view methods, i.e., Co-
GCN [31] and ERL-MVSC [32]. Finally, some recently 
proposed multi-omics data analysis approaches, includ-
ing DeepMO [8], MOGONET [3], MoGCN [20] and 
Moanna [33], are also compared in our experiments.

For single-view methods, the multi-omics features are 
combined to construct an integrated feature matrix. For 
a fair comparison, all compared methods are tested by 
their default settings. For DeepMoIC, the hidden dimen-
sions of the autoencoders are set to 1,000 for the TCGA 
and 100 for the other datasets, because the TCGA data-
set has more samples and we ought to keep more features 
for a comprehensive description. The count of layers of 
autoencoder is set to 1. During the training of the autoen-
coder, the training epoch is set to 100, as shown in Fig. 2, 
which eventually converges after 20 epochs across all 
datasets. During the training of the deep GCN module, 
the learning rate is configured as 0.001, and the training 
epochs are set to 300. Through the gird search, the hyper-
parameters α and � are both set to 0.5 on all datasets. The 
hidden unit dimensions of deep GCN are set to 512 for 
the TCGA and 64 for the other datasets.

For all methods, every experiment is conducted 5 times, 
and we utilize the mean results along with the standard 
deviation as the eventual result. Table  2 provides the 
performance comparison of the proposed method and 
other baselines, which is assessed by Accuracy, F1 score, 
Precision, and Recall. From experimental results, we can 
observe that DeepMoIC performs superior in the cancer 
subtype classification task on all datasets.

By comparing the classification performance of these 
datasets, we can observe that some existing multi-omics 
data analysis methods obtain undesired performance 
with a small sample size, such as on the BRCA dataset. 
However, on the TCGA dataset with a larger sample 
size, these methods fail to achieve satisfactory perfor-
mance and even may perform unfavorably compared to 
some single-view methods. This further demonstrates 
the robustness and scalability of our proposed method. 
Besides, MoGCN is characterized as shallow GCN mod-
els that exhibit inferior performance compared to Deep-
MoIC. Notably, the performance of MoGCN on the 
TCGA dataset significantly declines compared with that 
on the smaller BRCA dataset. This observation under-
scores the superior capability of deep GCN in extracting 
intricate relationships within multi-omics data. It is plau-
sible that the limitations of DeepMO and Moanna, which 

Table 2 Performance (mean% ± std%) comparison of all compared algorithms

Methods Accuracy F1 score Precision Recall Accuracy F1 score Precision Recall

Dataset TCGA BRCA 
SVM 81.55(0.00) 73.88(0.00) 76.15(0.00) 73.51(0.00) 87.01(0.00) 84.32(0.00) 90.59(0.00) 81.26(0.00)

RF 81.11(0.26) 70.32(0.44) 66.66(0.73) 74.41(0.37) 84.16(1.09) 77.90(0.84) 70.08(1.36) 87.71(0.58)

KNN 64.79(0.00) 47.26(0.00) 40.85(0.00) 56.06(0.00) 81.82(0.00) 77.45(0.00) 68.40(0.00) 89.27(0.00)

CoGCN 71.80(0.60) 64.51(0.63) 68.24(1.51) 63.88(0.62) 78.63(1.57) 74.31(2.11) 76.96(2.47) 72.66(2.03)

ERL-MVSC 80.03(0.16) 77.75(0.46) 77.64(0.67) 77.86(0.50) 87.51(0.74) 86.38(1.7) 89.73(2.36) 83.28(1.24)

DeepMO 72.43(4.77) 73.02(2.65) 77.08(1.33) 73.48(4.35) 86.05(1.76) 84.98(1.54) 83.90(2.06) 86.94(1.13)

MOGONET 67.03(0.69) 52.89(0.56) 53.83(0.84) 60.17(0.15) 77.76(2.22) 74.85(3.72) 81.26(1.24) 74.03(3.05)

MoGCN 72.06(0.79) 52.28(2.29) 54.89(2.33) 59.31(1.90) 89.37(0.78) 87.51(0.95) 89.54(0.65) 85.98(1.09)

Moanna 80.72(0.42) 74.49(0.79) 77.03(0.37) 73.80(0.92) 90.73(0.78) 88.02(1.28) 89.43(1.31) 87.13(1.18)

DeepMoIC 84.28(0.16) 81.01(0.35) 81.97(0.17) 81.09(0.49) 92.98(0.66) 91.52(0.71) 92.22(0.56) 90.88(0.84)
Dataset KIPAN LGG
SVM 93.43(0.00) 93.91(0.00) 93.94(0.00) 93.88(0.00) 68.75(0.00) 67.82(0.00) 69.45(0.00) 68.09(0.00)

RF 93.90(0.74) 88.15(1.44) 88.18(1.45) 88.13(1.42) 72.66(2.62) 60.04(2.33) 59.80(2.22) 60.28(2.22)

KNN 91.55(0.00) 83.66(0.00) 84.44(0.00) 84.05(0.00) 63.29(0.00) 53.67(0.00) 52.85(0.00) 54.53(0.00)

CoGCN 94.61(0.65) 93.33(0.64) 93.92(0.50) 92.78(0.79) 68.86(2.29) 68.67(2.51) 69.59(1.66) 69.07(2.16)

ERL-MVSC 94.13(1.36) 92.51(1.73) 91.06(1.79) 94.02(1.98) 70.67(2.56) 71.92(2.21) 72.39(2.03) 71.46(2.40)

DeepMO 95.11(1.00) 93.56(1.44) 92.53(1.97) 94.91(1.62) 72.00(2.53) 71.83(2.55) 72.01(2.60) 71.81(2.55)

MOGONET 94.84(0.42) 93.37(0.85) 95.16(0.36) 91.91(1.17) 65.71(3.20) 65.03(3.84) 68.45(1.38) 66.71(2.70)

MoGCN 92.08(0.36) 92.47(0.41) 92.41(0.31) 92.67(0.65) 67.14(2.61) 66.41(3.90) 67.86(1.40) 66.90(2.98)

Moanna 93.78(0.62) 93.73(0.80) 93.51(0.68) 94.16(1.01) 69.33(1.69) 68.50(1.97) 70.49(1.80) 68.84(1.76)

DeepMoIC 96.25(0.17) 95.36(0.13) 95.39(0.14) 95.35(0.12) 73.24(1.39) 73.18(1.41) 73.21(1.39) 73.17(1.42)
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solely rely on feature attributes, and MOGONET, which 
neglects the exploration of relationships between differ-
ent histological data during the construction of the simi-
larity network, contribute to their comparatively poor 
performance.

As presented in Fig. 3, we also compare the classifica-
tion performance of single-omic and multi-omics data 
using the DeepMoIC, we can observe that the perfor-
mance of utilizing single-omics data is inferior to that of 
utilizing multi-omics data across all datasets. This proves 
that research on cancer subtype classification can benefit 
from integrating multi-omics data to account for multiple 
perspectives. By leveraging diverse biological data types, 
we can gain a deeper and more accurate understanding of 
cancer subtypes, leading to improved classification accu-
racy and robustness.

Application to survive analysis
In this subsection, survival prediction experiments are 
performed to further validate the effectiveness of the 
proposed DeepMoIC. First, we use the trained model to 
predict the test set of BRCA to get subtype classification 
results. Then, utilizing the lifelines package in Python, 
we plotted Kaplan-Meier survival curves for two sub-
types of the test set, Luminal A and Luminal B, which 
help describe and compare the survival probabilities of 
different groups over time. Log-rank tests are employed 
to assess distinctions among the survival curves, and 
log-rank P-values are calculated to indicate the statistical 

significance of the observed differences between the 
survival curves. Differences are deemed statistically sig-
nificant at P-values < 0.05, and the smaller the P-value, 
indicating that the results have greater statistical sig-
nificance. In Fig.  4, the survival prediction results of all 
compared algorithms are presented. The performances 
of DeepMO and Moanna are even worse than SVM and 
RF, which is further evidence that one cannot rely solely 
on feature attributes to study complex multi-omics data. 
The P-value of 4.8e−03 reveals the better subtype predic-
tion results of DeepMoIC compared with other methods, 
highlighting the robust performance and general applica-
bility of DeepMoIC.

Identification of significant biomarkers by AE
In this part, we use the autoencoder to extract the impor-
tant gene of mRNA data of KIPAN at the transcriptome 
level, and enrichment analysis is performed. Specifically, we 
train AE for 100 epochs up to convergence, extracting 100 
genes with the highest score every 10 epochs. The score 
was calculated by multiplying the sum of the absolute val-
ues of the weights of the first encoder layer by the stand-
ard deviation of each raw feature, ultimately resulting in a 
total of 135 genes. Figure 5 presents the Biological Process 
(BP), Molecular Function (MF), and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway annotations using 
DAVID ( p < 0.05 ) [34, 35]. For biological processes, the 
genes are involved in cell proliferation, migration, adhe-
sion, transcription regulation, and so on, which are crucial 

Fig. 2 The training loss curves of the autoencoder

Fig. 3 The accuracy and F1 score comparison of DeepMoIC with single-omic and multi-omic data on all datasets
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for cancer progression and metastasis. For instance, genes 
such as EGLN3, JAG1, and JUP were highlighted in the 
regulation of cell proliferation, indicating their role in 
tumor growth. Additionally, the BP analysis identifies key 
pathways like the Wnt signaling pathway, which is critical 
in driving cancer development [36]. In terms of molecu-
lar functions, the analysis revealed significant associa-
tions with sequence-specific DNA binding, growth factor 
binding, and receptor binding, which are critical in cancer 
cell signaling and communication. The KEGG pathway 
enrichment analysis showed that these biomarkers are sig-
nificantly enriched in cancer-related pathways, including 
pathways in cancer, the p53 signaling pathway, cell adhe-
sion molecules, and so on. These pathways play crucial 
roles in oncogenic processes and cancer progression. For 
example, the p53 signaling pathway is essential for regulat-
ing cell cycle and apoptosis, processes often dysregulated 
in cancer, and its role in kidney cancer is particularly criti-
cal for tumor suppression and genomic stability [37]. JUP 
appeared in several key pathways, including the Wnt sign-
aling pathway and cell adhesion molecules, emphasizing its 
multifunctional role in cancer progression. These findings 
demonstrate that the AE effectively captures significant 
biomarkers that are crucial for understanding cancer devel-
opment and progression. The enrichment of biomarkers in 
significant BP, MF, and KEGG validates the capability of AE 
to extract meaningful features for cancer subtype classifi-
cation. This provides valuable insights for further research 
and potential therapeutic strategies.

Parameter sensitivity analysis
To explore the impact of depth of deep GCN, we design 
several models with diverse numbers of layers, and the 
compared results are displayed in Fig. 6. We can find that 
as the count of layers increases, the performance rises 

gradually. This highlights the suitability of deep GCN for 
fitting omics data, outperforming shallow GCN in can-
cer subtype classification. When each dataset reaches a 
certain number of layers, metrics such as Accuracy and 
F1-Score achieve optimal performance. Nevertheless, 
as the count of layers keeps increasing, the performance 
gradually decreases. This is probably because although 
DeepMoIC overcomes over-smoothing to some extent, 
having more layers does not necessarily lead to better per-
formance. Moreover, because graph networks are built 
with multi-omics integration data with significant differ-
ences in node connectivity, graph sparsity, information 
propagation path lengths, and so on, different datasets 
require specific numbers of layers in deep GCN to achieve 
optimal performance. Therefore, we need to choose dif-
ferent layers for different multi-omics datasets. In the 
experiment, the number of layers of DeepMoIC is set to 
8 for TCGA and LGG, 20 for BRCA, and 16 for KIPAN.

For another important parameter α of the deep GCN, 
which controls the initial residual ratio. We compared the 
performance of α from 0.1 to 1.0 to verify the effective-
ness of the initial residual. In Fig. 7, we can observe that 
when increases from 0.1 to 0.5, the classification perfor-
mance on all datasets gradually increases. At α = 0.5, the 
model achieves optimal or near-optimal performance 
across all datasets. This suggests that a balanced con-
tribution from both the initial features and the learned 
embedding representation is crucial for maximizing 
model performance. However, after 0.5, for datasets like 
LGG, which have relatively poor data quality, adding too 
much initial feature information will lead to a decrease 
in performance. Other datasets can maintain a relatively 
stable state but may not achieve the best results. There-
fore, we finally set α to 0.5 to achieve a more robust and 
stable result.

Fig. 4 Survive prediction of all compared algorithms on BRCA dataset
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For the similarity matrix K in the PSN construction 
process, which records the k nearest neighbors. We com-
pare different k to evaluate the impact of the number of 

neighbors on the performance of the method. As shown 
in Fig.  8, when k=10, we can see that the proposed 
method cannot achieve good results on all datasets, 

Fig. 5 Biological Process, Molecular Function, and KEGG pathway annotations of mRNA data from KIPAN

Fig. 6 Classifiaction performance comparison of DeepMoIC with different numbers of layers on all datasets
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because it cannot capture enough information from simi-
lar neighbors. When k=30, except for KIPAN, the per-
formance of other datasets has declined compared with 
k=20, because too much neighbor information may also 
bring more noise in the information aggregation process 
and affect the performance. So in the end we choose k as 
20 to achieve a more balanced result.

Effect of initial residual and identity mapping
As depicted in Fig. 9, we perform an ablation experiment 
on all datasets, focusing on two strategies for construct-
ing deep GCN. The results reveal that the over-smooth-
ing issue can be partially mitigated with the inclusion of 
initial residuals, and performance is sustained even with 
an increased number of layers, though it does not surpass 
the performance achieved using both strategies. In con-
trast, utilizing only identity mapping leads to solid per-
formance in shallow layers but exhibits a rapid decline as 
the count of layers increases. Similar performance degra-
dation is observed in the absence of either policy, with a 
notable drop occurring as the count of layers increases. 
Thus, the optimal approach involves employing a combi-
nation of both strategies for improved performance.

Effect of patient similarity network
A key module of DeepMoIC is the construction of the 
PSN matrix, which is a pivotal component that enables 

the model to harness information from neighborhood 
patients. To validate the impact of the PSN matrix on 
cancer diagnosis, we conduct an ablation study. Two 
experiments are designed: one with the PSN matrix 
as input, whereas the other using the identity matrix 
as input. Experimental results in Fig.  10 reveal that the 
model trained with the PSN outperforms its counter-
part trained without it. This emphasizes the crucial role 
of the PSN matrix within the DeepMoIC framework. By 
incorporating information from neighborhood patients, 
our proposed method exhibits enhanced classification 
results. This stresses the effectiveness of utilizing the 
PSN information to enhance the robustness of cancer 
diagnosis.

Discussion
Multi-omics research is becoming increasingly relevant 
in cancer research due to its potential to provide a com-
prehensive view of the biological processes involved in 
cancer development and progression. By integrating 
data from several omics types, such as genomics, tran-
scriptomics, and proteomics, it can unveil complicated 
connections and identify crucial biomarkers that single-
omics techniques may overlook. To address obstacles in 
multi-omics research, we propose a novel multi-omics 
data integration approach named DeepMoIC, spe-
cifically designed for cancer subtype classification. The 

Fig. 7 The classification accuracy of the proposed method w.r.t. parameter α
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Fig. 8 The classification accuracy of the proposed method w.r.t. parameter k 

Fig. 9 Ablation study on initial residual connection and identity mapping of deep GCN module
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proposed DeepMoIC leverages deep GCN based on two 
novel strategies to improve performance and robustness. 
Firstly, we apply the AE to extract compact and meaning-
ful representations from high-dimensional omics data. 
This procedure minimizes noise and improves feature 
quality, facilitating more accurate downstream analysis. 
Additionally, we find that AE can capture important bio-
markers, significantly improving the interpretability of 
DeepMoIC by providing insights into the biological sig-
nificance of the extracted features, as well as indicating 
that the reduced feature matrix is highly informative and 
improves classification performance. Furthermore, Deep-
MoIC incorporates a patient similarity network (PSN) 
into the model, improving comprehension of patient rela-
tionships using multi-omics data. The PSN captures com-
plex interactions across different omics types, allowing 
the model to identify patient groups with similar molecu-
lar characteristics. This relational insight is essential for 
accurate cancer subtype classification. The experiment 
also demonstrates that including the PSN considerably 
improves classification performance.

Finally, we design a deep GCN module based on ini-
tial residual connection and identity mapping for the 
cancer subtype classification. This module is critical for 
extracting high-order features from multi-omics data, 
which are required to understand complex relationships 
between multiple omics layers. High-order features 
enable the model to detect subtle patterns and associa-
tions that shallow architectures might miss, leading to 
more precise and significant biological discoveries. The 
experiments reveal that deeper GCN architectures out-
perform shallower ones in classification tasks, up to an 
optimal depth, which varies across datasets. For exam-
ple, the optimal depth for the TCGA is 8, while for the 
BRCA is 20. This variation is likely due to the differ-
ent complexities and characteristics of each dataset. 
Currently, we determine the optimal number of layers 
through extensive experimentation. While this approach 
has proven effective, future research could explore more 
systematic and theoretically grounded methods for 
selecting the optimal number of layers, tailored to the 
specific complexities of various datasets. To overcome 

the over-smoothing problem, we employ two strate-
gies: initial residual connections and identity mapping. 
These strategies enable the deep GCN module to lever-
age the benefits of deep architectures while preserv-
ing input data integrity. This balance leads to superior 
performance in classification tasks, as evidenced by our 
experiments. The ability to capture and preserve high-
order features improves the accuracy and robustness of 
cancer subtype classification, highlighting the efficacy of 
our multi-omics integration strategy.

Conclusion
The proposed DeepMoIC method leverages deep Graph 
Convolutional Network and effectively addresses chal-
lenges in multi-omics studies. By efficiently extracting 
compact omics representations with autoencoder and 
integrating patient similarity networks, DeepMoIC sig-
nificantly enhances the understanding of cancer, leading 
to improved performance in cancer subtype classifica-
tion. The results demonstrate that DeepMoIC consist-
ently outperforms all compared methods across all 
datasets, potentially setting a new benchmark for super-
vised multi-omics integration and offering enhanced pre-
cision medicine insights in cancer research.
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