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Abstract—Sparsity-constrained optimization problems are
common in machine learning, such as sparse coding, low-rank
minimization and compressive sensing. However, most of previous
studies focused on constructing various hand-crafted sparse regu-
larizers, while little work was devoted to learning adaptive sparse
regularizers from given input data for specific tasks. In this paper,
we propose a deep sparse regularizer learning model that learns
data-driven sparse regularizers adaptively. Via the proximal
gradient algorithm, we find that the sparse regularizer learning is
equivalent to learning a parameterized activation function. This
encourages us to learn sparse regularizers in the deep learning
framework. Therefore, we build a neural network composed of
multiple blocks, each being differentiable and reusable. All blocks
contain learnable piecewise linear activation functions which
correspond to the sparse regularizer to be learned. Furthermore,
the proposed model is trained with back propagation, and all
parameters in this model are learned end-to-end. We apply
our framework to multi-view clustering and semi-supervised
classification tasks to learn a latent compact representation.
Experimental results demonstrate the superiority of the proposed
framework over state-of-the-art multi-view learning models.

Index Terms—deep learning, sparse regularizer, parameterized
activation function, proximal operator, multi-view learning.

I. INTRODUCTION

A considerable amount of research has indicated the im-
portance of sparse representation in boosting the performance
of various machine learning tasks [1], [2], [3]. For example,
low-rank minimization generally enforces sparse constraints
on singular values. Sparse coding models deal with intractable
nonconvex `0-norm minimization problems by replacing `0
with its surrogate functions, such as `1-norm, which lead-
s to more tractable computations [4], [5]. However, these
previous studies put more emphases on predefined sparse
norms, resulting in hand-crafted rather than data-driven sparse
regularizers. Traditionally, most of these methods rely on
an iterative algorithm that minimizes an objective function.
The inherently sequential structure and data-dependent time
complexity result in a major limitation on the efficiency of
the algorithms. Meanwhile, such optimization problems are
generally non-differentiable and thus suffer from difficulties
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in computing gradients, which suggests limitations in applying
existing sparse regularizers to deep learning architectures for
performance boosting and computational acceleration.

Several attempts have shown to be encouraging for im-
proving learning performance when embedding some specific
sparse norms into deep neural networks. For example, based
on an iterative shrinkage and thresholding algorithm (ISTA)
for the `1-norm regularizer [6], learned ISTA (LISTA) [7]
was proposed to train sparse codes with neural networks,
where each block was differentiable and reusable. ISTA was
further transformed into a structured deep neural network
dubbed ISTA-Net [8], which optimized an `1-norm based
compressive sensing reconstruction model. An `0 regularized
encoder [9] was also explored for constructing an effective
sparse regularization with time-unfolding feed-forward neural
networks. Sprechmann et al. demonstrated a principled way to
construct learnable pursuit process architectures for structured
sparse models, which was derived from the iteration of prox-
imal gradient descent algorithms [10]. Tanaka et al. proposed
sparse recurrent neural networks to conduct efficient energy
information processing [11]. Luo et al. mapped a temporally-
coherent sparse coding to a special type of stacked recurrent
neural networks (sRNN) to learn all parameters simultaneously
[12]. These latest research results inspire us to apply back
propagation and gradient descents in deep learning frameworks
to traditional iterative algorithms.

However, from the perspective of model training, deep
neural networks (DNNs) are usually limited to conducting
back propagation and gradient descent with differentiable
regularizers. Therefore, how to build a network that can deal
with non-differentiable objective functions using differentiable
blocks in the deep learning framework is a pivotal problem.
Differentiable programming solves this problem by reformu-
lating traditional machine learning methods, which transforms
the optimization process into differentiable network structures.
In this way, the model can be trained with back propagation,
and some key hyperparameters become learnable. Substantial
studies have concentrated on this technique [13], [14], [15].
For instance, ADMM-Net was derived from the iterative
procedures of an alternating direction method of multipliers
(ADMM) algorithm for optimizing an MRI model based on
compressive sensing [16]. Xie et al. proposed a differentiable
linearized ADMM (DLADMM) for solving convex problems
with linear constraints [17]. Bertinetto et al. taught a deep
network to use standard machine learning tools like ridge
regression to quickly learn parameters [18]. Because proximal
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Fig. 1: Illustration of some popular hand-crafted sparse regularizers (For `p-norm, p = 0.5. For all penalties, λ = 1.0, γ = 0.5). All these
sparse regularizers share some common properties: nonconvex and non-decreasing on (0,∞).

operators are commonly utilized in optimization methods, ex-
isting studies have also proved the corresponding relationships
between proximal operators and activation functions employed
in neural networks, so that neural networks can handle some
specific optimization problems [19], [20], [21]. Nevertheless,
how to learn valid sparse regularizers via activation functions
remains unexplored. To our knowledge, very limited research
has been devoted to the general learning framework of sparse
regularizers.

In this paper, we propose an efficient deep network frame-
work dubbed deep sparse regularizer learning (DSRL), to
adaptively learn data-driven sparse regularizers. Bridged by the
proximal operator, we exploit the correspondence between reg-
ularizers and parameterized activation functions. Accordingly,
we may learn piecewise linear activation functions, which is an
indirect way to learn sparse regularizers. Because all iterative
blocks in DSRL are differentiable, the proposed model can
be trained with back propagation. Further, we apply DSRL to
the multi-view learning task, where a fused multi-view latent
representation is reconstructed using the proposed framework.
The data-driven sparse regularizers learned by DSRL are
compared with some predefined surrogates of `0-norm to
validate the effectiveness of our method. Besides, we also
compare the performance with hand-crafted sparse surrogates,
and experimental results indicate that DSRL outperforms other
sparse regularizers. The main contributions of this paper can
be summarized in the following four aspects:

1) Convert the problem of learning a sparse regularizer
into that of learning an activation function by exploiting the
correspondence between regularizers and activation functions.

2) Provide the conditions that a learnable activation function
should satisfy to yield a valid regularizer. We further propose
two-stage projections such that the conditions can be satisfied
when learning the activation function.

3) Propose an end-to-end deep data-driven regularizer learn-
ing scheme. Via the parameterized activation functions, the
outputs are guaranteed to be appropriately sparse for the given
specific task at the best.

4) We apply the proposed method to multi-view clustering
and semi-supervised classification. It achieves superior per-
formance on eight real-world datasets compared with specific
regularizers and other state-of-the-art methods.

II. RELATED WORK

A large amount of research has recognized the critical
role played by sparse representation. However, most previous

TABLE I: Several specified definitions of g(·) for sparse surrogates.

Penalty Formula of g(x), x ≥ 0, λ ≥ 0

`p-norm [22] g(x) = λxp, 0 < p < 1

Logarithm [23] g(x) = λ
log(γ+1)

log(γx+ 1)

Geman [24] g(x) = λx
x+γ

Laplace [25] g(x) = λ(1− exp(− x
γ
))

ETP [26] g(x) = λ
1−exp(−γx)
1−exp(−γ)

studies concentrated on hand-crafted sparsity. Several com-
monly used sparse surrogates are shown in Table I [27]. These
defined sparse regularizers are non-decreasing and nonconvex
on (0,∞), as illustrated in Figure 1. Some of these regularizers
are lower semicontinuous. Specifically, `p-norm is widely used
in multiple kernel learning to promote sparse kernel combi-
nations so that the constructed model is more interpretable
and scalable [28]. Laplace function is leveraged to conduct
a homotopic approximation of the `0 minimization problem
in compressive sensing [29]. These sparse surrogates are also
applied to rank regularized optimization problems:

argmin
X
J (X) = rank(X) + f(X), (1)

where f(·) is generally a differentiable loss function. Because
solving the problem with a rank constraint is difficult and even
NP-hard, this problem is then transformed into

argmin
X
J (X) =

n∑
i=1

g(σi(X)) + f(X), (2)

where σi(X) is the i-th singular value of X ∈ Rn×m and
g(·) is a surrogate of `0-norm as listed in Table I [27]. On
the basis of predefined surrogate functions, Lu et al. proposed
an iteratively reweighted nuclear norm (IRNN) algorithm to
solve nonconvex nonsmooth rank optimizations [30]. Zhang et
al. further handled nonconvex nonsmooth rank minimization
problems with closed-form solutions of `p-norm when p = 1

2
and 2

3 [31]. Dan et al. studied low-rank recovery models
with the `p-norm loss and provided a better approximation
guarantee [32]. In general, these hand-crafted sparse surrogates
tend to approximate specific sparsity and are often sensitive
to predefined hyperparameters, which may lead to suboptimal
performance. Moreover, due to the particular properties of
various surrogates, a specific surrogate function may not be
applicable to a wide range of application scenarios, which
poses the difficulty in selecting a suitable surrogate.
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Many DNNs require sparse weights or outputs, and a
number of recent studies [33], [34] also suggested that large-
scale DNNs usually contained lots of redundant parameters,
which resulted in a waste of computational resources and a
high risk of overfitting. There have been several attempts to
encourage the sparsity of weights or outputs in DNNs. For
instance, sparse autoencoders [35] only allowed a small num-
ber of hidden units to be active at once with Kullback-Leibler
divergence. Tartaglione et al. exploited a simple thresholding
approach to promote the sparse property of network parame-
ters [36]. Liu et al. pruned redundant connections to generate
sparse layers [37]. Bhowmik et al. addressed the problem of
sparse spike deconvolution from noisy measurements within a
Bayesian paradigm, where the sparsity was measured by `1-
norm [38]. Wang et al. presented a deep structured model to
learn a non-linear function, where the regularization term for
the proximal operator was fixed as `1-norm [39]. Mahapatra et
al. [40] solved the sparse signal reconstruction problem using
a feed-forward deep neural network, which was regularized
with `1-norm sparsity and generalized the ISTA framework.
Srinivas et al. proposed a new method to control the number of
activated neurons, which led to a highly sparse neural network
model [41]. Ma et al. used an integrated transformed noncon-
vex `1 regularizer to promote the sparsity of parameters [42].
Generally, most of these existing works on DNNs promoted
sparsity with hand-crafted sparsity penalties or defined thresh-
olding functions. Some of them were based on an unfolded
ISTA framework or only handled `1-norm sparsity. Besides, to
the best of our knowledge, very limited research has been done
for learning deep sparse regularizers adaptively. In this paper,
we address data-driven sparse regularizer learning problems
from the viewpoint of activation functions, which is beyond
the ISTA learning framework and not limited to certain specific
sparse regularizers.

III. PROPOSED METHOD

To learn sparse regularizers adaptively in a data-driven
manner, we first construct a connection between sparse reg-
ularizers and activation functions via proximal operators. By
the connection, learning a sparse regularizer is equivalently
transformed into learning a parameterized activation function
in a deep neural network. Accordingly, a block-wise neural
network is designed to learn a data-driven sparse regularizer.
Figure 2 illustrates the structure of the proposed framework.

A. Correspondence between Sparse Regularizers and Activa-
tion Functions

Proximal operators are widely used in various machine
learning optimization problems. We start with a univariate
proximal operator, i.e.,

Proxg(y) = argmin
x
J (x) = 1

2
(x− y)2 + g(x), (3)

where g(·) can be a sparse regularizer. It was proved in [27]
that ξ(y) ≡ Proxg(y) is a non-decreasing function of y. Thus
it can serve as an activation function of a neural network. On

the other hand, given a non-decreasing function ξ(x), we can
define

g(x) =

∫ x

0

(ξ−1(y)− y)dy

=

∫ x

0

ξ−1(y)dy − 1

2
x2,

(4)

where ξ(y) : R → R is a univariate function and ξ−1(y) is
the inverse function of ξ(y). Note that if ξ−1(·) is not single-
valued, g(x) is still well defined. It was proved in [21] that
the proximal operator of such a g(x), defined in (3), is exactly
ξ(x), because the optimality condition of (3) is 0 ∈ (ξ−1(x)−
x)+(x−y). Thus we have shown the correspondence between
ξ(x) and g(x) via the proximal operator. If g(x) is a sparse
regularizer, then ξ(x) has to map a neighborhood of 0 to 0
(see Figure 2 of [27]). Namely, 0 ∈ ξ−1(0). Therefore, g(x) =
0, which is also non-decreasing and nonnegative on (0,∞).
Based on these conditions, g(x) is similar to the hand-crafted
sparse regularizer shown in Figure 1 when x ∈ (0,∞), which
makes the learned sparse regularizer close to the optimal one
with minimum constraints.

As an example, by considering a commonly used `1 regular-
izer b|x|, we can check that argmin

x

1
2 (x−y)

2+b|x| = ξθ(y),
in which

ξθ(x) =

x− b, b ≤ x,
0, −b ≤ x < b,

x+ b, x < −b,
(5)

where θ = {b} can be a learnable parameter set with b ≥ 0.
With the above analysis, learning a sparse regularizer g(x)

is transformed into learning an activation function ξ(x) that is
non-decreasing and maps a neighborhood of 0 to 0. Because
it is tough for the activation function of only one bias to
learn a suitable sparse regularizer with the given data, we
employ piecewise linear functions to approximate the learnable
activation function, consisting of more learnable coefficients
and biases. Particularly, an activation function of two sets of
learnable parameters (θ1, θ2) is defined as

ξ(θ1,θ2)(x) =


w2(x− b2) + w1(b2 − b1), b2 ≤ x,

w1(x− b1), b1 ≤ x < b2,
0, −b1 ≤ x < b1,

w1(x+ b1), −b2 ≤ x < −b1,
w2(x+ b2) + w1(b1 − b2), x < −b2,

(6)

where x ∈ R, 0 ≤ b1 ≤ b2 and w1, w2 > 0 are learnable
parameters with θ1 = (w1, b1) and θ2 = (w2, b2). Noting that
the form of the activation function is not limited to two pa-
rameter sets, we consider (6) as an example, which is a trade-
off between computational complexity and learning accuracy
to achieve desired performance in practical applications. With
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this definition, the inverse function ξ−1(θ1,θ2)
(y) is computed by

ξ−1(θ1,θ2)
(y) =



y−w1(b2−b1)
w2

+ b2, w1(b2 − b1) ≤ y,
y
w1

+ b1, 0 ≤ y < w1(b2 − b1),
[−b, b], y = 0,
y
w1
− b1, −w1(b2 − b1) ≤ y < 0,

y−w1(b2−b1)
w2

− b2 y < −w1(b2 − b1).
(7)

Therefore, the sparse regularizer learned by a parameterized
activation function is derived on the basis of (4):

g(x) =


( 1
2w2
− 1

2
)x2 + (b2 − w1(b2−b1)

w2
)x

+w1(w1−w2)
2w2

(b2 − b1)2, x ≥ w1(b2 − b1),
( 1
2w1
− 1

2
)x2 + b1x, 0 ≤ x < w1(b2 − b1),

g(−x), x < 0.
(8)

It is observed from the formula that the learned sparse regu-
larizer g(x) is symmetric about the y-axis. When x = 0, g(x)
is exactly equal to 0.

For the sake of theoretic strictness and better interpretability,
it is required that w1, w2 > 0, 0 ≤ b1 ≤ b2, g(x) ≥ 0 and g(x)
is non-decreasing when x ≥ w1(b2− b1). Then the conditions
become [refer to Section A of Appendix]:

w1 > 0, 1 ≥ w2 > 0,

b2 ≥ b1 ≥ max

{
0,
w1 − 1

w1
b2

}
.

(9)

Directly projecting parameter set Θ = (w1, w2, b1, b2) on-
to (9) is also difficult. We may first project (w1, w2) and
then project (b1, b2) after fixing (w1, w2). The projection of
(w1, w2) is formulated as w1 = max{w1, ε} and w2 =
min{max{w1, ε}, 1}, where ε is a small positive value. After
fixing (w1, w2), we project (b1, b2) onto Sb = {(b1, b2)|b2 ≥
b1 ≥ max{0, w1−1

w1
b2}}. To be exact, when 0 < w1 ≤ 1, the

projection Proj(b1, b2) of (b1, b2) onto Sb is

Proj(b1, b2) =


(b1, b2), b1 ≥ 0, b2 ≥ 0, b1 ≤ b2,
(0, b2), b1 < 0, b2 > 0,
(0, 0), b2 ≤ min{0,−b1},

( b1+b22 , b1+b22 ), b1 ≥ |b2|.
(10)

When w1 > 1, the projection of (b1, b2) onto Sb becomes

Proj(b1, b2) =
(b1, b2), b2 ≥ 0, w1−1

w1
b2 ≤ b1 ≤ b2,

(ρ1b1 + ρ2b2, ρ2b1 + ρ3b2),
w1

1−w1
b2 < b1 <

w1−1
w1

b2,

(0, 0), b2 ≥ 0, b1 ≤ w1

1−w1
b2,

(0, 0), b2 ≤ min{0,−b1},
( b1+b22 , b1+b22 ), b1 ≥ |b2|,

(11)

where the parameter set {ρ1, ρ2, ρ3} is given as ρ1 =
(w1−1)2

w2
1+(w1−1)2 , ρ2 = w1(w1−1)

w2
1+(w1−1)2 and ρ3 =

w2
1

w2
1+(w1−1)2 .

B. Implicitly Learnable Deep Sparse Regularizer

Generic optimization problems with learnable sparse regu-
larizers g(·) can be written as

min
X
J (X) = f(X) + g(X), (12)

where g(Xij) =
∫Xij

0
(ξ−1Θ (y)− y)dy for any i ∈ {1, · · · , n}

and j ∈ {1, · · · ,m} with Θ to be learned by the theory
in Section III-A. The function f(X) is differentiable, and
its gradient is Lipschitz continuous. The iteration rule of
the proximal gradient method for solving Problem (12) is as
follows:

X(k+1) = argmin
X

f(X(k)) + 〈∇f(X(k)),X−X(k)〉

+
L

2
||X−X(k)||2F + g(X)

= argmin
X

L

2

∥∥∥∥X−X(k) +
1

L
∇f(X(k))

∥∥∥∥2
F

+ g(X),

(13)

where L is the Lipschitz constant of ∇f(·), i.e.,

||∇f(X)−∇f(Y)||F ≤ L||X−Y||F , (14)

for any X,Y ∈ Rn×m. Denoting W = X(k) − 1
L∇f(X

(k)),
the optimization problem above is exactly

Proxg(W) = argmin
X

1

2
||X−W||2F + g(X), (15)

where Proxg(·) is the proximal operator that is related to
the regularizer g(·). With these notations, the updating rule of
X(k+1) can be

X(k+1) = Proxg

(
X(k) − 1

L
∇f(X(k))

)
. (16)

Based on the above analysis, we propose an end-to-end deep
learning framework that learns data-driven sparse regularizers.
Each unit of the proposed framework is structured as a single
differentiable block, as demonstrated in Figure 2. Each block
accepts the output from the previous block as an input, and
feeds the calculated value to the next block. Consequently, the
proposed method can be implemented with a block-wise neural
network architecture. Specifically, the i-th block computes the
output with

Z(i) = X(i−1) −
1

L
∇f(X(i−1)), (17)

X(i) = ξΘ(Z(i)), (18)

where ξΘ(·) is the activation function parameterized by the
set Θ. DSRL is comprised of t differentiable blocks of the
learnable parameters Θ and L, which can be learned end-
to-end by back propagation [refer to Section B of Appendix].
Algorithm 1 illustrates the proposed DSRL in detail, which can
theoretically approximate any sparse regularizer g(x) in (12).
Compared with hand-crafted regularizers that are challenging
and time-consuming for parameter selection, the proposed
DSRL is more flexible to varying data because of its adaptive
optimization of learnable parameters. It learns potential sparse
regularizers in a data-driven way, which may steadily improve
the performance of given tasks.
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DSRL Network
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The 𝒊-th block
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Function 𝒇(𝐗)

Learned 

Parameter 𝚯

Initialization

Fig. 2: Framework of the proposed DSRL method. It consists of multiple unfolded blocks in which a basic block is made up of several
differentiable units, as demonstrated in the blue shapes.

Algorithm 1 Deep Sparse Regularizer Learning (DSRL)
Input: A differentiable function f(X) and the number of
blocks t.
Output: Learned parameter set Θ.

1: Initialize the data matrix X̃ ∈ Rn×m;
2: Initialize learnable parameter set Θ(0) and L(0);
3: Initialize counter k = 0;
4: while not convergent do
5: The parameter Θ(k) is projected onto the convex set S,

denoted by Θ̄(k);
6: Update Z(0) = X̃− 1

L(k)∇f(X̃);
7: Update X(0) = ξΘ̄(k)(Z(0));
8: for i = 1, · · · , t do
9: Update Z(i) = X(i−1) − 1

L(k)∇f(X(i−1));
10: Update X(i) = ξΘ̄(k)(Z(i));
11: end for
12: Update Θ(k+1) and L(k+1) with back propagation and

loss function J (X̃,X(t)) =
1
2‖X̃−X(t)‖2F ;

13: Update counter k = k + 1;
14: end while
15: return The learned parameter set Θ.

The computational complexity of the proposed method is
linearly related to the block number t for forward propagation.
Because a small t value often achieves acceptable performance
(as described in Section IV-G), the speed of the proposed
DSRL method is relatively fast. After training, the parameters
of the activation functions are learned, and we obtain a
reconstructed sparse output by one-time forward propagation.

IV. EXPERIMENTAL ANALYSIS

In this section, comprehensive experiments on publicly
available real-world datasets are conducted to validate the
superiority of the learned sparse regularizer by DSRL in terms
of multi-view clustering and semi-supervised classification.

Consider multi-view data X = {Xi}vi=1 with Xi ∈ Rn×di ,
where n and v are the sample and view numbers, and di is

the feature number of the i-th view data. Consequently, the
multi-view clustering task is to learn a cluster indicator y ∈
{0, 1}n from the given multi-view data with a certain criterion
loss({Xi}vi=1;y). Due to varying dimensions of different view
data, we attempt to learn an optimal affinity matrix from
the evaluated multi-view similarity matrices W = {Wi}vi=1

of X = {Xi}vi=1. In order to verify the superiority of the
proposed learnable sparse regularizer method, we formulate
the multi-view clustering task in the following simple form

arg min
α,W

1

2

∥∥∥∥∥∥W −
v∑
j=1

αjWj

∥∥∥∥∥∥
2

F

+ g(W),

subject to 0 ≤ α ≤ 1,αT1 = 1,

(19)

where α = [α1; · · · ;αv] ∈ Rv is a v-dimensional column vec-
tor representing the weights of all views, and g(·) is a sparse
regularizer yet to be learned. The fused affinity matrix of the
multi-view data is represented as a convex hull of all views,
and the representation coefficients are learned adaptively from
the optimization objective. Since the view number v tends to
be small, a separate algorithm can be developed to compute
the optimal value of α. Adaptive weights can be optimized
by the ADMM algorithm. In particular, suppose that vec(·)
is the matrix vectorization operator, then the optimization
subproblem with respect to α is written as

min
α

1

2
‖[vec(W1), · · · , vec(Wv)]α− vec(W)‖2F ,

subject to 0 ≤ α ≤ 1,αT1 = 1.
(20)

While keeping the weighted vector α, we compute the optimal
solution W = Proxσg (

∑
j=1 αjWj). Because f(W) =

1
2 ||W −

∑v
j=1 αjWj ||2F is differentiable, we can apply the

proposed DSRL framework to learning an optimal data-driven
sparse regularizer g(W).

As to the multi-view semi-supervised classification task,
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with a fixed value of α, we formulate the problem as

argmin
W

1

2

∥∥∥∥∥∥W −
v∑
j=1

αjWj

∥∥∥∥∥∥
2

F

+
µ

2
Tr
(
YT (D−W)Y

)
+
ν

2
‖Y − L‖2F + g(W),

(21)

where D = [Dij ]n×n is a diagonal matrix with Dii =∑n
j=1 Wij , µ > 0 and ν > 0 are fixed regularization

parameters, and L = [Lij ]n×c is the matrix to indicate the
limited number of labeled data points. Specifically, Lij = 1
if the i-th data point belongs to the j-th class, and Lij = 0
otherwise. Consequently, Y is the predictive class assignment
indicator matrix that can be computed by

Y =
(
I +

µ

ν
(D−W)

)−1
L. (22)

Actually, the optimal Y can also be solved with some learnable
methods for computational acceleration, but we pay greater
attention to the learned sparse regularizer and thus adopt a
straightforward closed-form solution. Because f(W) in (21) is
differentiable, DSRL is also applicable to solving this problem.

A. Datasets

In this subsection, eight publicly available datasets are used
to validate the effectiveness of the proposed DSRL method.
These datasets are derived from real-world image applications,
ranging from images to videos. Several sample images are
randomly collected from the test datasets, as demonstrated in
Figure 3. It is suggested that the input images are captured at
varied viewing angles, illumination and resolution variations,
which motivates us to extract multi-view low-level features
using feature descriptors for each dataset. Here we provide
more details for the feature extractors of these test datasets.

NUS-WIDECaltech101ALOI

Fig. 3: Several sample images from the test image datasets.

ALOI: This dataset includes a collection of object images
taken under varied light conditions and rotation angles1. The
four commonly used features are 64-D RGB color histograms,
64-D HSV color histograms, 77-D color similarities, and 13-D
Haralick features.

1https://elki-project.github.io/datasets/multi view

Caltech101-7/Caltech101-20: Caltech101 is a popular ob-
ject recognition dataset with 101 classes of images2. We follow
a previous work [43] in selecting the widely used subsets
Caltech101-7 and Caltech101-20. Six extracted features are
available: 48-D Gabor, 40-D wavelet moments (WM), 254-D
CENTRIST, 1,984-D histogram of oriented gradients (HOG),
512-D GIST and 928-D LBP features.

MNIST: This is a well-known dataset of handwritten digit-
s3. Three types of features are extracted from all test images:
30-D IsoProjection, 9-D Linear Discriminant Analysis, and 9-
D Neighborhood Preserving Embedding features.

NUS-WIDE: As a web image dataset for object recogni-
tion4, we select eight classes of six feature sets: 64-D color
histogram, 225-D block-wise color moments, 144-D color
correlogram, 73-D edge direction histogram, 128-D wavelet
texture and 500-D bag of words from SIFT descriptors.

MSRC-v1: It is an image dataset with eight object classes,
each with 30 images5. Following [44], we select seven classes
composed of trees, buildings, airplanes, cows, faces, cars and
bicycles. Five visual feature sources are extracted from each
image: 24-D color moment, 576-D HOG, 512-D GIST, 256-D
local binary pattern, and 256-D CENTRIST features.

ORL: This database contains ten different face images, each
of 40 subjects, which are taken at various times with different
lighting and facial expressions6.

Youtube: This is a video dataset containing 2,000 instances
in 10 topics, along with six views of both visual and audio fea-
tures, which are the 2,000-D cuboids histogram, 1,024-D hist
motion estimate, 64-D HOG features, 512-D MFCC features,
64-D volume streams, and 647-D spectrogram streams7.

A summary of these eight test datasets for comparative
experiments is presented in Table II, including the numbers
of samples, features, views and data types.

B. Performance Evaluation

For clustering tasks, three well-known evaluation metrics
are applied to the comparative experiments, including cluster-
ing accuracy (ACC), normalized mutual information (NMI),
and adjusted rand index (ARI). Given sample xi for any
i ∈ {1, · · · , n}, the predicted clustering label and the real label
are denoted as pi and qi, respectively. The ACC is defined as

ACC =

∑n
i=1 δ (qi,map (pi))

n
, (23)

where δ(a, b) = 1 if a = b, and δ(a, b) = 0 otherwise.
Here, map(·) is the best permutation mapping that matches
the predicted clustering labels to the ground truths. Denote the

2http://www.vision.caltech.edu/Image Datasets/Caltech101/
3http://yann.lecun.com/exdb/mnist/
4https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-

WIDE.html
5http://riemenschneider.hayko.at/vision/dataset/task.php?did=35
6http://cam-orl.co.uk/facedatabase.html
7http://archive.ics.uci.edu/ml/datasets
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Dataset ID Datasets # Samples # Views # Total features # Classes Data types

1 ALOI 1,079 4 218 10 Object image

2 Caltech101-7 1,474 6 3,766 7 Object image

3 Caltech101-20 2,386 6 3,766 20 Object image

4 MNIST 2,000 3 48 10 Digit image

5 NUS-WIDE 1,600 6 1,134 8 Web image

6 MSRC-v1 210 5 1,622 7 Object image

7 ORL 400 4 1,689 40 Face image

8 Youtube 2,000 6 4,311 10 Video data

TABLE II: A brief description of the test datasets.

predictive clustering result as C̃ = {C̃i}c̃i=1 and the ground
truth as C = {Cj}cj=1, then NMI is calculated by

NMI =

∑c̃
i=1

∑c
j=1 |C̃i ∩Cj | log n|C̃i∩Cj |

|Ci||Cj |√(∑c̃
i=1 |C̃i| log

˜|Ci|
n

)(∑c
j=1 |Cj | log |Cj |

n

) . (24)

ARI characterizes the agreement between two partitions C and
C̃, defined as

ARI =

∑
ij

(
nij
2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
n
2

)
1
2

[∑
i

(
ai
2

)
+
∑
j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
n
2

) ,
(25)

where [nij ] = |C̃i ∩ Cj |, ai = |C̃i| and bj = |Cj |. Higher
values of all these metrics indicate better performance.

As for multi-view semi-supervised learning, we compute
its classification accuracy for the performance evaluation. All
experiments are repeated ten times, with accuracy means and
standard deviations taken as the final results.

C. Parameter Setup

So as to validate the effectiveness and efficiency of the pro-
posed DSRL method, several popular state-of-the-art methods
are used for performance comparisons of multi-view clustering
(K-Means, MLAN [45], SwMC [43], MSC-IAS [46], MCGC
[47] and BMVC [48]) and semi-supervised classification (KN-
N, SVM, AdaBoost, MVAR [49], MLAN [45] and HLR-
M2VS [50]).

Here, we clarify some of the parameter settings used in the
compared methods. All methods are tuned using their default
settings if feasible. For other open hyperparameters, we adopt
the following settings. The number of the nearest neighbors
for MSC-IAS is fixed as 3, while the dimension of the intact
space is fixed as 500. For MCGC, the regularization parameter
β is set to 0.1. For MLAN, the number of adaptive neighbors
ranges within [1, 10]. For BMVC, we randomly generate 10%
multi-view training data for non-linear anchor embedding. For
MVAR, the trade-off weight for each view is fixed at λ = 1000,
while the redistribution parameter over the views is set at r = 2.
For HLR-M2VS, two weighted factors are tuned as λ1 = 0.2
and λ2 = 0.4.

As for the proposed DSRL method, the activation function
defined in (6) is employed. We set the block number as t = 10.

The learning rate is fixed as lr = 0.02 for clustering and
lr = 0.05 for semi-supervised classification. The initialization
for the parameterized activation function is tuned as w1 =
w2 = 1.0, b1 = 1.0 and b2 = 2.0. All methods are run on a
computer with an i5-9500 CPU and 8GB RAM.

D. Multi-View Clustering

Figure 4 shows the learned sparse regularizer g(x) =∫ x
0
(ξ−1(θ1,θ2)

(y) − y)dy by the activation function ξ(θ1,θ2)(x)
of DSRL on all test datasets for clustering tasks. The learned
parameter Θ differs in varied datasets, as a result of learning
sparse regularizers in a data-driven manner. All the learned
parameters of the activation functions obey (9). We observe
that all the curves of the learned regularizers are symmetric
about the y-axes, and g(x) = 0 when x = 0. In all test datasets,
the learned sparse regularizer functions are nonnegative and
monotonically increasing on (w1(b2 − b1),∞), but they may
not be monotonically increasing on (0, w1(b2 − b1)), which
is drastically different from hand-crafted sparse regularizers.
It can be seen from these figures that all learned sparse
regularizers are differentiable except at x = 0. Note that DSRL
does not need to approximate any hand-crafted sparse regular-
izer. Instead, it aims to learn task-specific sparse regularizers
for given data. Therefore, the curves of learned g(x) differ
from those of hand-crafted sparse regularizers. However, these
regularizers share some common characteristics: nonconvex,
nondecreasing on (0,∞), and g(0) = 0.

Table III presents the clustering accuracy on all test datasets
with various surrogate functions g(x) in terms of ACC, NMI
and ARI. The baseline method records the performance of
directly solving f(W) without sparse regularizers. To provide
a fair comparison for all the defined sparse regularizers, both
λ and γ range in (0, 1.0]. As for the `p-norm, the p value
ranges in (0, 1). From the experimental results, we have the
observation that the performance of these specific regularizers
is comparable in some datasets. At the same time, the proposed
DSRL method achieves better performance than manually
designed g(x). Table III also provides the sparsity of the
learned g(x), where the sparsity is defined as the proportion
of near zero outputs (x ≤ 0.01). Notice that the input data are
sparse for relatively large-scale datasets since the Gaussian
kernel and nearest neighbors are used for affinity matrix
evaluation. All methods still yield sparser outputs successfully
in most datasets, and significantly promote the sparsity in all
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(a) ALOI

𝑤1 = 1.27,𝑤2 = 0.13, 𝑏1 = 0.24, 𝑏2 = 1.12
(b) Caltech101-7

𝑤1 = 1.13,𝑤2 = 0.06, 𝑏1 = 0.12, 𝑏2 = 1.06
(c) Caltech101-20

𝑤1 = 1.13,𝑤2 = 0.06, 𝑏1 = 0.12, 𝑏2 = 1.06
(d) MNIST

𝑤1 = 1.32,𝑤2 = 0.22, 𝑏1 = 0.29, 𝑏2 = 1.21

(e) NUS-WIDE

𝑤1 = 1.06,𝑤2 = 0.06, 𝑏1 = 0.07, 𝑏2 = 1.00
(g) ORL

𝑤1 = 1.21,𝑤2 = 0.30, 𝑏1 = 0.34, 𝑏2 = 1.29
(h) Youtube

𝑤1 = 1.04,𝑤2 = 0.06, 𝑏1 = 0.10, 𝑏2 = 1.02
(f) MSRC-v1

𝑤1 = 1.23,𝑤2 = 0.30, 𝑏1 = 0.34, 𝑏2 = 1.29

Fig. 4: The learned sparse regularizer g(x) =
∫ x
0
(ξ−1

(θ1,θ2)
(y) − y)dy on test datasets for multi-view clustering. All learned parameters

ξ(θ1,θ2)(x) of the activation functions are listed under each subfigure, with the points x = ±w1(b2 − b1) marked in red.

Datasets \ Methods Baseline `p-norm Logarithm Geman Laplace ETP DSRL

ALOI

ACC 75.7 (2.1) 76.6 (2.1) 75.3 (2.2) 61.9 (3.1) 61.7 (3.1) 61.3 (3.5) 78.7 (1.8)
NMI 77.1 (2.0) 77.1 (1.5) 75.9 (1.8) 64.6 (1.0) 64.4 (1.1) 64.6 (0.8) 78.7 (1.7)
ARI 58.1 (3.9) 57.5 (3.4) 51.8 (4.5) 33.3 (3.1) 33.2 (3.1) 32.3 (3.6) 61.7 (3.7)

Sparsity 91.79 92.18 92.34 98.12 98.22 98.04 91.83

Caltech101-7

ACC 82.9 (0.1) 82.9 (0.3) 83.0 (0.4) 64.0 (5.8) 65.9 (0.6) 65.5 (5.8) 83.8 (1.7)
NMI 59.9 (1.1) 60.1 (0.7) 60.3 (0.8) 37.6 (5.3) 37.6 (5.6) 37.6 (5.5) 61.6 (4.1)
ARI 59.3 (2.0) 61.8 (4.8) 61.5 (4.2) 17.9 (1.6) 21.0 (4.8) 20.0 (5.3) 61.9 (2.2)

Sparsity 91.68 92.11 97.74 97.90 97.92 99.03 91.73

Caltech101-20

ACC 71.5 (1.3) 71.4 (0.7) 70.9 (1.2) 68.7 (1.2) 66.9 (1.5) 67.0 (1.4) 72.9 (1.1)
NMI 63.0 (2.8) 66.3 (3.0) 63.5 (3.0) 57.9 (2.4) 55.7 (2.3) 56.9 (2.8) 68.2 (1.4)
ARI 71.7 (6.2) 62.2 (6.9) 57.1 (9.3) 38.5 (6.8) 34.8 (5.7) 37.5 (5.9) 73.8 (2.2)

Sparsity 87.59 97.22 97.45 98.40 98.55 98.35 92.18

MNIST

ACC 84.2 (3.2) 85.4 (2.7) 85.4 (2.7) 81.8 (0.5) 79.5 (2.3) 79.0 (1.1) 85.6 (0.3)
NMI 74.6 (1.2) 74.9 (0.8) 74.9 (0.9) 73.7 (0.3) 72.1 (0.7) 71.8 (0.7) 75.6 (0.2)
ARI 74.4 (2.8) 75.1 (2.7) 75.1 (2.4) 64.8 (0.5) 61.1 (2.6) 57.9 (2.3) 75.4 (0.4)

Sparsity 89.92 93.33 93.16 97.12 99.27 99.31 93.34

NUS-WIDE

ACC 39.1 (1.5) 36.9 (0.5) 39.6 (1.2) 36.8 (0.3) 37.4 (0.5) 37.5 (0.4) 40.3 (0.1)
NMI 21.7 (1.9) 22.9 (0.7) 25.6 (1.2) 22.7 (0.5) 26.0 (0.6) 26.2 (0.6) 26.5 (0.4)
ARI 14.5 (0.4) 14.3 (0.9) 15.0 (0.6) 15.0 (0.5) 12.4 (0.2) 12.2 (0.2) 15.5 (0.2)

Sparsity 64.76 89.98 89.44 88.46 98.30 98.21 88.13

MSRC-v1

ACC 77.5 (4.9) 79.6 (0.3) 78.3 (3.4) 79.8 (0.2) 79.8 (1.3) 79.5 (0.3) 83.4 (4.3)
NMI 71.0 (2.4) 72.2 (0.6) 71.2 (1.9) 72.6 (0.6) 71.4 (0.8) 71.5 (0.7) 77.0 (3.0)
ARI 62.9 (3.9) 65.0 (0.6) 63.7 (3.0) 65.1 (0.5) 64.7 (1.5) 64.4 (0.7) 69.6 (4.4)

Sparsity 79.39 79.40 79.61 83.76 85.12 85.34 91.80

ORL

ACC 81.5 (1.4) 77.6 (0.9) 75.3 (0.6) 77.8 (0.6) 79.8 (0.8) 79.8 (0.9) 83.6 (1.2)
NMI 89.9 (0.6) 87.0 (0.3) 86.7 (0.4) 87.2 (0.4) 88.4 (0.5) 88.2 (0.4) 91.3 (0.4)
ARI 73.2 (1.2) 61.6 (2.5) 52.2 (1.4) 62.0 (1.0) 67.2 (1.5) 66.5 (1.0) 75.7 (1.5)

Sparsity 91.24 98.63 98.34 98.64 98.61 98.63 97.13

Youtube

ACC 38.9 (1.8) 40.5 (1.5) 41.2 (1.1) 35.8 (1.1) 38.6 (0.7) 38.1 (0.6) 42.1 (0.7)
NMI 24.5 (1.7) 25.2 (1.3) 24.8 (1.0) 20.0 (1.3) 24.5 (0.7) 23.9 (0.7) 27.0 (0.7)
ARI 15.1 (0.8) 16.1 (2.2) 16.3 (1.5) 12.4 (1.0) 12.9 (0.3) 12.1 (0.8) 18.3 (0.7)

Sparsity 91.72 91.73 91.88 95.89 99.16 99.18 92.91

TABLE III: Clustering accuracy (mean% and standard deviation%) and sparsity (proportion of near zero outputs) of the proposed DSRL
method and hand-crafted sparse surrogates g(x) defined in Table I, where the best performance is highlighted in bold.
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Datasets \ Methods K-Means MLAN SwMC MSC-IAS MCGC BMVC DSRL

ALOI
ACC 47.5 (3.3) 59.0 (5.2) 45.7 (0.0) 59.4 (4.3) 52.4 (0.0) 54.8 (0.0) 78.7 (1.8)
NMI 47.3 (2.1) 59.4 (4.3) 45.7 (0.0) 70.1 (1.8) 52.5 (0.0) 43.8 (0.0) 78.7 (1.7)
ARI 33.0 (2.9) 34.5 (5.6) 17.8 (0.0) 53.2 (3.5) 25.9 (0.0) 32.8 (0.0) 61.7 (3.7)

Caltech101-7
ACC 49.6 (5.8) 78.0 (0.0) 66.5 (0.0) 71.3 (4.3) 64.3 (0.0) 57.9 (0.0) 83.8 (1.7)
NMI 32.7 (1.9) 63.0 (0.0) 57.0 (0.0) 49.5 (3.8) 53.6 (0.0) 47.0 (0.0) 61.6 (4.1)
ARI 30.2 (4.1) 57.2 (0.0) 42.7 (0.0) 52.1 (6.7) 49.8 (0.0) 41.8 (0.0) 61.9 (2.2)

Caltech101-20
ACC 31.3 (2.5) 52.6 (0.8) 54.1 (0.0) 41.9 (2.7) 54.6 (0.0) 47.4 (0.7) 72.9 (1.1)
NMI 34.5 (1.1) 47.4 (0.3) 45.2 (0.0) 36.8 (2.5) 57.5 (0.0) 57.0 (0.3) 68.2 (1.4)
ARI 18.9 (1.8) 19.8 (0.7) 19.8 (0.0) 16.9 (3.0) 38.8 (0.0) 35.0 (0.7) 73.8 (2.2)

MNIST
ACC 73.9 (7.2) 77.1 (0.5) 77.9 (0.0) 74.8 (0.3) 88.7 (0.0) 62.6 (2.2) 85.6 (0.3)
NMI 68.1 (2.3) 75.5 (0.7) 70.9 (0.0) 74.5 (0.9) 77.4 (0.0) 56.2 (0.9) 75.6 (0.2)
ARI 63.9 (4.3) 68.9 (1.0) 66.2 (0.0) 67.3 (0.8) 78.8 (0.0) 47.8 (2.1) 75.4 (0.4)

NUS-WIDE
ACC 32.0 (0.7) 34.7 (3.2) 22.9 (0.0) 32.4 (1.8) 34.3 (0.0) 36.6 (1.3) 40.3 (0.1)
NMI 17.5 (0.7) 22.8 (2.0) 13.8 (0.0) 21.1 (0.6) 21.8 (0.0) 19.0 (0.4) 26.5 (0.4)
ARI 9.00 (0.7) 13.8 (3.5) 3.60 (0.0) 11.4 (0.7) 13.3 (0.0) 13.5 (0.4) 15.5 (0.2)

MSRC-v1
ACC 46.3 (1.7) 68.1 (0.0) 78.6 (0.0) 47.5 (2.0) 75.2 (0.0) 63.8 (0.0) 83.4 (4.3)
NMI 40.2 (1.5) 63.0 (0.0) 73.0 (0.0) 50.0 (1.7) 72.4 (0.0) 57.4 (0.0) 77.0 (3.0)
ARI 26.9 (1.7) 50.4 (0.0) 65.2 (0.0) 31.0 (2.0) 64.3 (0.0) 48.8 (0.0) 69.6 (4.4)

ORL
ACC 59.0 (2.4) 77.8 (0.0) 74.8 (0.0) 73.3 (2.2) 81.0 (0.0) 56.7 (0.0) 83.6 (1.2)
NMI 77.9 (1.4) 88.5 (0.0) 88.5 (0.0) 86.8 (1.4) 90.3 (0.0) 74.6 (0.0) 91.3 (0.4)
ARI 46.3 (2.8) 66.9 (0.0) 56.4 (0.0) 62.7 (3.3) 70.0 (0.0) 60.0 (0.0) 75.7 (1.5)

Youtube
ACC 24.2 (1.6) 16.3 (1.0) 19.1 (0.0) 28.5 (0.8) 30.0 (0.0) 41.5 (0.7) 42.1 (0.7)
NMI 15.1 (0.6) 6.14 (1.1) 11.1 (0.0) 15.7 (0.5) 17.4 (0.0) 25.7 (0.7) 27.0 (0.7)
ARI 7.91 (0.9) 1.98 (0.6) 3.61 (0.0) 9.50 (9.3) 8.80 (0.0) 17.8 (0.4) 18.3 (0.7)

TABLE IV: Clustering accuracy (mean% and standard deviation%) of all compared multi-view clustering methods, where the best performance
is highlighted in bold and the second best is underlined.

datasets except ALOI and Caltech101-7. Nonetheless, it can be
seen that excessive sparseness may lead to decreased clustering
performance, and DSRL improves the clustering performance
with suitable sparse outputs. These observations indicate that
the parameterized activation functions succeed in learning a
data-driven sparse representation of the similarity matrices,
and thus such learned sparse regularizers are more robust when
applied to various datasets. Distinct from traditional hand-
crafted sparse regularizers, DSRL can learn a more suitable
sparse regularizer that is tailored for a given dataset. In
other words, DSRL can learn a data-driven sparse regularizer,
which intuitively provides strong generalization capability in
practical applications.

Table IV compares the clustering performance of DSRL
and several state-of-the-art methods in terms of ACC, NMI
and ARI. An example of visualization for clustering results
in the MNIST dataset is demonstrated in Figure 5. It can
be observed that most of the multi-view clustering methods
achieve better performance than single-view K-Means cluster-
ing. The experimental results also suggest that the proposed
approach gains high accuracy and is effective on all test
datasets. DSRL performs the best according to all metrics on
seven of the eight test datasets. For the MNIST dataset, the
proposed model also achieves the second best performance
by all evaluation metrics. Overall, these results validate the
feasibility and superiority of the proposed DSRL method.

E. Multi-View Semi-Supervised Classification

As an application to multi-view semi-supervised learning,
we conduct experiments with 10% randomly generated labeled

data. The learned sparse regularizers g(x) used for semi-
supervised classification are illustrated in Figure 6. It can be
seen from this figure that although the learned parameters
differ from those in clustering scenarios, they share some com-
mon properties. We also compare the performance of DSRL
and various defined sparse regularizers, as shown in Table V.
Unlike clustering tasks, it is noticed that the original affinity
matrix without sparse constraints leads to poor performance
for semi-supervised classification. All methods yield sparser
outputs than those in clustering tasks, and obtain more signifi-
cant improvements in classification accuracy. Although DSRL
does not always generate the sparsest outputs, it achieves the
best performance on all datasets with considerable sparseness,
which partially suggests the importance and necessity of data-
driven learning for sparse regularizers. Moreover, it was dif-
ficult and time-consuming to select suitable hyperparameters
for these defined sparse regularizers in the experiments, and
DSRL solves this problem by learning sparse regularizers
adaptively. Table VI compares DSRL with other state-of-
the-art semi-supervised classification methods, indicating that
DSRL outperforms the others in seven of the eight test
datasets. Further, we compare the performance of all methods
as the ratio of labeled data ranges in {0.05, 0.10, · · · , 0.80} in
Figure 7. Overall, DSRL performs best on all test datasets, and
gains higher accuracy with very limited numbers of labeled
data points. The desired performance in semi-supervised clas-
sification further validates the effectiveness of the proposed
DSRL method.
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(h) DSRL

(b) K-Means(a) Ground Truth

(g) BMVC

(c) MLAN

(f) MCGC(e) MSC-IAS

(d) SwMC

Fig. 5: Visualization for multi-view clustering results in dataset MNIST. Here, the high-dimensional input data are projected onto a two-
dimensional subspace using t-SNE, then the corresponding data points are marked in varying colors according to their predictive labels.

(a) ALOI

𝑤1 = 1.29,𝑤2 = 0.50, 𝑏1 = 0.55, 𝑏2 = 1.50

(b) Caltech101-7

𝑤1 = 1.21,𝑤2 = 0.27, 𝑏1 = 0.25, 𝑏2 = 1.26
(c) Caltech101-20

𝑤1 = 1.26,𝑤2 = 0.50, 𝑏1 = 0.51, 𝑏2 = 1.50
(d) MNIST

𝑤1 = 1.11,𝑤2 = 0.75, 𝑏1 = 0.78, 𝑏2 = 1.75

(e) NUS-WIDE

𝑤1 = 1.26,𝑤2 = 0.50, 𝑏1 = 0.53, 𝑏2 = 1.50
(g) ORL

𝑤1 = 1.29,𝑤2 = 0.50, 𝑏1 = 0.55, 𝑏2 = 1.50
(h) Youtube

𝑤1 = 1.23,𝑤2 = 0.27, 𝑏1 = 0.27, 𝑏2 = 1.26
(f) MSRC-v1

𝑤1 = 1.27,𝑤2 = 0.50, 𝑏1 = 0.53, 𝑏2 = 1.50

Fig. 6: The learned sparse regularizer g(x) =
∫ x
0
(ξ−1

(θ1,θ2)
(y)−y)dy on test datasets for multi-view semi-supervised classification. All learned

parameters ξ(θ1,θ2)(x) of the activation functions are listed under each subfigure, with the points x = ±w1(b2 − b1) marked in red.

F. Runtime Analyses

In this subsection, we compare the runtimes of all defined
sparse surrogates and the proposed DSRL method in Figure
8. The runtimes of all methods are related to the input data
dimensions, therefore these methods run faster on the MSRC-
v1 and ORL datasets. As to other datasets with more samples,
these methods require more time to yield sparse outputs. The
time costs of hand-crafted sparse surrogates are comparable,
and the experimental results indicate that DSRL outperforms
other methods in terms of computational cost. Especially when
used for semi-supervised classification, DSRL only takes less
than half of the time required by other sparse surrogates. This
can account for why we adopt a higher learning rate in semi-

supervised classification than in clustering tasks, suggesting
that DSRL converges faster to produce optimal sparse outputs
in this sense.

G. Parameter Sensitivity

In this subsection, we examine the convergence and ro-
bustness of the proposed DSRL method. Its loss values with
various numbers of iterations on different test datasets are
demonstrated in Figure 9. We observe that the loss objec-
tive value of DSRL gradually decreases as the number of
iterations increases. Eventually, when the iteration number is
large enough, it becomes stable with slight fluctuations, which
suggests that it approaches convergence.
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Datasets \ Methods Baseline `p-norm Logarithm Geman Laplace ETP DSRL

ALOI ACC 59.9 (9.7) 90.6 (1.2) 90.9 (1.1) 84.8 (5.6) 86.7 (3.4) 77.0 (7.5) 91.6 (1.1)
Sparsity 91.79 97.95 98.17 98.79 98.71 92.78 97.95

Caltech101-7 ACC 80.4 (5.1) 92.1 (0.5) 92.0 (0.9) 89.6 (1.8) 89.8 (1.4) 87.6 (2.0) 93.7 (0.9)
Sparsity 91.68 98.67 98.42 98.45 98.19 97.96 97.32

Caltech101-20 ACC 36.3 (1.9) 78.4 (1.7) 82.5 (1.8) 82.2 (1.2) 80.4 (1.6) 81.4 (1.2) 84.2 (1.3)
Sparsity 87.59 98.14 98.28 98.76 98.86 98.83 98.00

MNIST ACC 55.5 (9.7) 72.7 (5.0) 64.7 (5.7) 62.2 (3.3) 62.6 (5.8) 66.8 (6.2) 87.6 (1.2)
Sparsity 89.92 93.26 93.19 93.14 93.10 93.12 95.00

NUS-WIDE ACC 23.5 (6.7) 36.6 (2.1) 28.9 (4.6) 24.2 (7.6) 26.4 (6.0) 23.9 (6.8) 44.3 (2.4)
Sparsity 64.76 96.02 95.90 98.47 98.80 99.03 96.01

MSRC-v1 ACC 52.3 (9.5) 72.9 (7.9) 74.7 (6.6) 72.6 (6.4) 72.1 (6.8) 72.9 (7.2) 82.2 (4.3)
Sparsity 79.39 93.27 93.12 96.24 97.39 97.88 93.32

ORL ACC 43.1 (4.3) 40.3 (3.9) 36.8 (4.3) 38.6 (5.5) 41.3 (4.0) 41.2 (5.9) 54.9 (3.8)
Sparsity 91.24 91.31 91.39 91.37 92.40 92.38 97.10

Youtube ACC 32.3 (5.9) 36.9 (0.8) 44.6 (1.5) 29.4 (1.4) 34.7 (2.1) 43.5 (1.7) 48.0 (1.1)
Sparsity 91.72 99.63 99.53 99.69 99.60 99.50 99.06

TABLE V: Classification accuracy (mean% and standard deviation%) and sparsity (proportion of near zero outputs) of the proposed method
DSRL and compared hand-crafted sparse surrogates g(x) defined in Table I, where the best performance is highlighted in bold.

Datasets \ Methods KNN SVM AdaBoost MVAR MLAN HLR-M2VS DSRL

ALOI 45.8 (3.0) 37.0 (6.6) 69.9 (9.5) 67.1 (6.0) 82.7 (2.5) 87.7 (1.7) 91.6 (1.1)

Caltech101-7 85.4 (0.8) 87.2 (1.9) 85.5 (1.2) 83.6 (0.6) 57.1 (1.2) 84.6 (1.0) 93.7 (0.9)

Caltech101-20 67.0 (0.7) 71.0 (2.3) 61.7 (2.5) 68.9 (4.6) 47.0 (1.7) 65.6 (2.1) 84.2 (1.3)

MNIST 86.5 (1.1) 87.2 (1.3) 63.3 (6.0) 84.1 (1.4) 68.8 (2.3) 87.1 (0.4) 87.6 (1.2)

NUS-WIDE 31.7 (2.1) 43.8 (1.9) 33.7 (3.0) 33.0 (2.2) 47.9 (1.2) 28.7 (1.1) 44.3 (2.4)

MSRC-v1 55.7 (5.9) 58.9 (5.9) 33.5 (5.2) 49.3 (5.0) 81.8 (1.9) 53.3 (5.3) 82.2 (4.3)

ORL 47.0 (3.4) 46.9 (2.4) 10.0 (0.2) 48.6 (4.2) 51.0 (2.3) 52.0 (4.4) 54.9 (3.8)

Youtube 35.9 (1.5) 42.8 (1.0) 27.4 (4.7) 37.6 (1.8) 36.4 (1.0) 32.7 (1.1) 48.0 (1.1)

TABLE VI: Classification accuracy (mean% and standard deviation%) of all compared semi-supervised classification methods, where the
best performance is highlighted in bold and the second best is underlined.

(a) (b)

Fig. 8: Runtime comparison for all sparse surrogates and DSRL in (a) clustering and (b) semi-supervised classification.
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(a) ALOI (b) Caltech101-7 (c) Caltech101-20 (d) MNIST

(e) NUS-WIDE (f) MSRC-v1 (g) ORL (h) Youtube

Fig. 9: The convergence curves of the proposed DSRL method on all test datasets.

(a) ALOI (b) Caltech101-7 (c) Caltech101-20 (d) MNIST

(e) NUS-WIDE (f) MSRC-v1 (g) ORL (h) Youtube

Fig. 10: Relationship between clustering performance (ACC, ARI, and NMI) and block number in {2, 4, · · · , 24} of the proposed DSRL
method.

The performance of DSRL for clustering tasks with various
numbers of blocks is reported in Figure 10 in terms of ACC,
NMI and ARI. In all figures, the block number ranges in
{2, 4, · · · , 24}, and the learning rate lr is fixed as 0.02. Several
significant observations can be made. First, a small block
number t leads to an acceptable result, which indicates that
a smaller block number can be set to speed up computation.
Second, the three performance evaluation metrics increase with
block number for most datasets, becoming stable with slight
fluctuations at t > 10. This is an empirical explanation for why
we fix t = 10 in previous experiments to obtain acceptable
results. Third, the influence of block number is not significant
on some datasets such as ALOI, Caltech101-7, NUS-WIDE
and Youtube, however, overall the experimental results follow

our previous observations. We also demonstrate the influence
of block numbers for multi-view semi-supervised classification
in Figure 11. In this case, the classification performance is
more robust to the block number, and the experiments further
validate our previous analyses.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an effective neural network mod-
el dubbed DSRL for learning data-driven sparse regularizers
adaptively, which was a block-wise deep neural network with
learnable activation functions. In this model, we exploited the
correspondence between sparse regularizers and parameterized
activation functions via proximal operators, where sparse reg-
ularizers could be obtained from the integration of activation
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(c) Caltech101-20 (d) MNIST

(a) ALOI (b) Caltech101-7

Fig. 7: Performance of all compared methods in semi-supervised
classification tasks as the ratio of labeled data ranges in
{0.05, 0.10, · · · , 0.80}.

(a) (b)

Fig. 11: Relationship between classification performance and block
number in {2, 4, · · · , 24} of the proposed DSRL method on (a)
ALOI, Caltech101-7, Caltech101-20 and MNIST, (b) NUS-WIDE,
MSRC-v1, ORL and Youtube.

functions. This provided a solid theoretical justification for
DSRL. The proposed DSRL method was demonstrated to be
capable of solving optimization problems with adaptive sparse
regularizers, which were not limited to hand-crafted sparse
weights or outputs. Finally, we compared the performance
of DSRL with those of hand-crafted sparse regularizers on
eight real-world multi-view datasets. DSRL achieved superior
performance in terms of multi-view clustering and semi-
supervised classification. This approach is expected to provide
some insights on learning adaptive sparse regularizers for
various machine learning tasks. Currently, the learned sparse
regularizers are only for entrywise sparsity. In future work, we
will further explore learnable multivariate sparse regularizers.
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