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Data representation aims at learning an efficient low-dimensional representation, which is
always a challenging task in machine learning and computer vision. It can largely improve
the performance of specific learning tasks. Unsupervised methods are extensively applied
to data representation, which considers the internal connection among data. Most of exist-
ing unsupervised models usually use a specific norm to favor certain distributions of the
input data, leading to an unsustainable encouraging performance for given learning tasks.
In this paper, we propose an efficient data representation method to address large-scale
feature representation problems, where the deep random walk of unitary invariance is
exploited for learning discriminative features. First, the data representation is formulated
as deep random walk problems, where unitarily invariant norms are employed to capture
diverse beneficial perspectives hidden in the data. It is embedded into a state transition
matrix model, where an arbitrary number of transition steps is available for an accurate
affinity evaluation. Second, data representation problems are then transformed as high-
order matrix factorization tasks with unitary invariance. Third, a closed-form solution is
proved for the formulated data representation problem, which may provide a new perspec-
tive for solving high-order matrix factorization problems. Finally, extensive comparative
experiments are conducted in publicly available real-world data sets. In addition, experi-
mental results demonstrate that the proposed method achieves better performance than
other compared state-of-the-art approaches in terms of data clustering.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

In real-world applications, specific learning tasks are frequently characterized by large-scale data of extremely high
dimensions, which requires to efficiently discover beneficial patterns from given massive data. However, most of the
extracted features are redundant, irrelevant and inconsistent, which brings about negative effects on learning algorithms
and then decreases the performance of learning tasks. Towards this end, how to learn an efficient low-dimensional data rep-
resentation from massive data is crucial and challenging [20]. A favorable data representation is indicative of powerful dis-
criminative abilities and generalization capabilities of predictive algorithms.
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Data representation methods tend to be divided as two categories, namely feature selection and feature extraction. The
former aims at finding a minimal feature subset from the original feature space based on certain criteria, such as mutual
information maximization [30], orthogonal projection maximization [42] and sparse structure preservation [23,43], while
the latter is to search a low-dimensional representation through a certain transformation whose typical representatives con-
sist of principal component analysis (PCA) [29], linear discriminant analysis (LDA) [49], locally linear embedding (LLE) [33],
and locality preserving projection (LPP) [14]. There have been also a variety of well-known methods for data representation,
such as canonical correlation analysis [12] and non-negative matrix factorization [21].

Particularly, matrix factorization has captured much attention in the last decade since it provided new directions for
problem formulation and algorithm development in a batch mode [5,6,34]. Most of these data representation methods used
a specific distance metric to evaluate the reconstruction error between observed samples and ground truths. For example, Xu
et al. employed ‘2;1-norm to measure the canonical correlation loss term for data representation [46]. Lu et al. put forward a
nuclear norm-based 2-D linear discriminant analysis (HVNN-2DLDA) method for image representation [26]. Lu et al. defined
a new tensor nuclear norm and revisited the tensor robust principal component analysis problem [25]. Zhu et al. proposed a
robust ‘p-norm sparse representation model with adaptive feature weights for biometric image classification [54]. Neverthe-
less, a specific norm tends to favor certain distributions of the input data and leads to unsatisfying performance in some
practical applications. Towards this end, a unified scheme for data representation is constructed, in which unitarily invariant
norms are employed to capture multi-view distributions and deep randomwalk is used to exploit multi-scale nonlinear data
representations. In this scheme, any norm minimization problem of unitary invariance is solved by an almost closed-form
solution, aiming to provide a new distance metric learning perspective to uncover rewarding patterns from data.

In this paper, a new unified scheme for data representation problems is proposed, where deep randomwalk is designed to
characterize the state transition process of given samples, and unitarily invariant norms are employed to evaluate the resid-
ual reconstruction, as demonstrated in Fig. 1. In the first place, the unsupervised data representation is characterized by uni-
tarily invariant norms, where the deep random walk serves as a beneficial pipeline for learning multi-scale nonlinear
features. There is one more point, feature representation problems are formulated as high-order matrix factorization prob-
lems with unitarily invariant norm minimization. The last but not the least, a closed-form solution is proposed for the for-
mulated optimization problems of unitary invariance. In addition, the proposed method is tested in publicly available real-
world data sets including image data, text documents and gene expressions. Comprehensive experiments demonstrate that
the proposed method is superior to other compared state-of-the-art feature representation methods in terms of data
clustering.

The outline of this paper is arranged as follows. Related work is recalled in Section 2 and a large-scale data representation
method based on deep randomwalk of unitary invariance is proposed in Section 3. In Section 4, comprehensive experiments
are conducted to validate the effectiveness and efficiency of the proposed method, and the concluding remark is provided in
Section 5.
2. Related work

Data representation is a crucial task in machine learning and computer vision. It aims at learning a low-dimensional rep-
resentation from given large-scale data that may contain a great deal of noisy or uncorrelated features. By whether the
supervised information from class labels is available, data representation can be categorized as supervised, weakly super-
vised or unsupervised methods. The supervised data representation is to search a low-dimensional subspace under the guid-
ance of class label information [39], while the unsupervised one aims to learn a discriminative subspace using the internal
connection among the given data points [18,50]. Weakly supervised data representation falls into an intermediate medium
between these two methods, where only a small quantity of exactly labeled training data is available [27].

In the last decade, data representation learning has captured growing attention from researchers in a variety of areas
[9,31,45]. As examples, it exerted the effectiveness and efficiency in depth image reconstruction [4], text categorization
[19], multi-view learning [7], social image understanding [24], large-scale image data mining [16,47] and video analysis
[10]. In particular, Xuan et al. constructed a deep neural network based feature representation, namely variable-wise
weighted stacked auto-encoder for soft sensor modeling [52]. Feige introduced an efficient approach to represent data with
an invariant and equivariant manner [8]. Wang et al. established a general framework dubbed discerning feature supported
encoder, which integrated the auto-encoder and feature selection into a unified model to learn an effective feature represen-
tation [40]. Chen et al. put forward a discriminative feature representation method, which benefited both domain alignment
and data classification [3]. Wang and Guo came up with an efficient multimodal feature representation algorithm based
sparse multi-graph embedding [41]. Ayas and Ekinci introduced a sparse representation based multi-scale feature fusion
method to generate a high resolution image [1]. Huynh-The et al. proposed an encoding technique for pose-transition feature
learning and constructed an efficient action recognition fine-tuning model [17].

Based on the above analyses, it is suggested that the outlined representative work comes with varying benefits in diverse
application scenarios. Nevertheless, these existing works in an unsupervised learning were fed by an affinity matrix that
tended to be computed by a specific kernel, which may lead to an inaccurate evaluation. There is one more point that these
existing studies took no account of distance metric learning based model construction, problem optimization and algorithm
designing.
2



Fig. 1. An illustration of the proposed method. Leveraging deep random walk of unitary invariance, an accurate affinity matrix of samples is constructed
and a discriminative low-dimensional representation is learned.
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3. Deep random walk of unitary invariance for data representation

For clarity, a number of frequently used notations are recalled. Specifically, the input set of data points is denoted as
xif gni¼1 where xi is a d-dimensional row vector, i.e., xi 2 Rd for any i 2 1; � � � ;nf g. The input data matrix is given by
X ¼ x1; � � � ;xn½ � 2 Rn�d. And a norm jj � jj is called unitarily invariant (simply denoted as jj � jjUI [51]) if jjMjj ¼ jjUMVjj for
any matrix M 2 Rm�n and unitary matrices U 2 Rm�m and V 2 Rn�n. As one of typical representatives of unitarily invariant
norms, Schatten p-norm is defined as
jjMjjSp ¼
Xmin m;nf g

i¼1

rp
i Mð Þ

 !1=p

; ð1Þ
where ri Mð Þ is the i-th singular value of M 2 Rm�n.

3.1. Deep random walk for problem formulation

For a given set of data points xif gni¼1, its affinity matrix K ¼ Kij
� �

n�n can be computed by kernel functions, such as Gaussian

kernel Kij ¼ exp �jjxi�xj jj22
2r2

� �
, where r is the kernel width to be predefined. After matrix normalization, P ¼ D�1=2KD�1=2 can be

regarded as a probability transition matrix of a random walk, where D ¼ Dij
� �

n�n is diagonal with Dii ¼
Pn

j¼1Kij. It is noted
that Pij 2 0;1½ � can be interpreted as the probability from the i-th state to the j-th state using only one step.

A main application of deep random walk is to learn a vertex sequence in network discovery [28,32]. For example, Deep-
Walk method aims at maximizing the overall accessible probability between a target state and its context states within cer-
tain transition steps [37,11]. Given a sequence of states S ¼ s1; � � � ; snf g and transition step t, the objective function of
DeepWalk is represented by the form of
X
s2S

1
n

Xn
i¼1

X
�tþi6j6tþi;j–i

log P sjjsi
� �" #

: ð2Þ
The transition probability P sjjsi
� �

is frequently evaluated by the softmax value of the inner product between pairwise sam-
ples, defined as
3
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P sjjsi
� � ¼ exp vT

j vi

� �
X
k2S

exp vT
kvi

� � ; ð3Þ
where vi is the corresponding feature vector of the state si. Yang et al. [48] proved that DeepWalk actually is a matrix fac-
torization with the input matrix A ¼ Aij

� �
n�n, defined by
Aij ¼ log
e Pþ P2 þ � � � þ Pt
� �h i

ij

t
; ð4Þ
where e Pk
� �h i

ij
is the probability that the state i walks to the state j at exactly k steps. Motivated by reinforcement learning

[35,38], we view A as an assignment strategy matrix of the long-run reward. Intuitively, the received rewards in the future
will be geometrically discounted over time. Correspondingly, the probability from the i-th state to the j-th state using exactly

k steps is computed by ckPk
h i

ij
, in which c 2 0;1½ Þ is a decay factor to measure the tendency of a rewarding message to lose

its effectiveness over time. In another perspective, c serves as a discount rate, being indicative of the weaker weight on the
total cost function as the number of transition steps increases.

When it comes to the data representation problems, the overall sample affinity matrix A ¼ Aij
� �

n�n within t transition
steps is represented as
Aij ¼ log
e cPþ cP½ �2 þ � � � þ cP½ �t
� �h i

ij

t
: ð5Þ
The introduced discount factor also provides a mathematical trick to guarantee an upper bound of the infinite sum. Conse-
quently, when taking into account of all possible numbers of transition steps, the affinity matrix A is computed by
Aij ¼ log
e I� cPð Þ�1
h i

ij

t
: ð6Þ
With the constructed affinity matrix A, the objective optimization problem for data representation is then formulated as
min
Q2Rn�k

jjA� QQ T jjUI þ ajjQ jjUI0; ð7Þ
where jj � jjUI and jj � jjUI0 are two unitarily invariant norms that may differ, aP 0 is a weighted parameter to balance the first
fitting term and the second regularization term, and k is the number of reduced dimensions. Herein, Q 2 Rn�k is a low-
dimensional representation of the original data matrix X 2 Rn�d with k � d.

3.2. Closed-form optimization algorithm

The singular value decomposition of a matrix M 2 Rm�n is the factorization of the form URVT , where both U 2 Rm�m and
V 2 Rn�n are unitary matrices, and R 2 Rm�n is the rectangular diagonal matrix, simply denoted by U;R;Vð Þ ¼ svd Mð Þ.

In order to explore the closed-form solution to the aforementioned data representation problem, a useful lemma is
introduced.

Lemma 1. [53] Let A;B 2 Rm�n; UA;RA;VAð Þ ¼ svd Að Þ, and UB;RB;VBð Þ ¼ svd Bð Þ. Then for any unitarily invariant norm jj � jjUI,
it holds
jjRA � RBjjUI 6 jjA� BjjUI: ð8Þ

The above lemma reveals that the matrix consisting of all singular values is the minimum stationary point of every uni-

tarily invariant norm. Based on the lemma, the optimal solution to unitarily invariant norm minimization problems is pro-
vided in an implicit form.
Theorem 1. For a given affinity matrix A 2 Rn�n, the minimizer of the objective optimization problem
min
Q2Rn�k

jjA� QQ T jjUI þ ajjQ jjUI0 ð9Þ
has the form Q � ¼ U kð Þ
A KkV

T
k where Kk 2 Rk�k is a positive diagonal matrix, U kð Þ

A is a k-truncation of UA with UA;RA;UAð Þ ¼ svd Að Þ,
and Vk 2 Rk�k is an arbitrary orthogonal matrix.
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Proof. Since A is a symmetric matrix, we can write UA;RA;UAð Þ ¼ svd Að Þ with real-valued factors. For any matrix Q 2 Rn�k,

let UQ ;RQ ;VQ
� � ¼ svd Qð Þ. It is noted that jjQ jjUI0 ¼ jjRQ jjUI0 and QQ T ¼ UQRQV

T
Q

� �
UQRQV

T
Q

� �T
¼ UQRQR

T
QU

T
Q . According to

Lemma 1, it follows
f Qð Þ , jjA� QQ T jjUI þ ajjQ jjUI0
¼ jjUARAU

T
A � UQRQR

T
QU

T
Q jjUI þ ajjRQ jjUI0

P jjRA � RQR
T
Q jjUI þ ajjRQ jjUI0

¼ jjRA � R nð Þ
Q

h i2
jjUI þ ajjR kð Þ

Q jjUI0 ¼ f UAU
T
QQ

� �
;

ð10Þ
where R kð Þ
Q 2 Rk�k is the k-truncation of RQ , i.e., RQ ¼ R kð Þ

Q ;O n�kð Þ�k

h i
with O n�kð Þ�k being a zero matrix, and

R nð Þ
Q

h i2
¼ R kð Þ

Q

� �2
Ok� n�kð Þ

O n�kð Þ�k O n�kð Þ� n�kð Þ

" #
. To sum up, it holds f Qð Þ P f UAUQQ

� �
for any Q 2 Rn�k, which implies that the minimizer

of the above optimization problem has the form of Q � ¼ UAKn�kV
T
k ¼ U kð Þ

A KkV
T
k .

As mentioned before, unitarily invariant norms can be regarded as an operator for structured learning, whereby the top
singular values are preserved. When resorting to special types of unitary invariance, the closed-form solution to the above
minimization problem is further explored. Substituting the unitarily invariant norms with Schatten norms, the objective
optimization problem has the following explicit analytic solution.

Theorem 2. For a given affinity matrix A 2 Rn�n with UA;RA;VAð Þ ¼ svd Að Þ, the minimizer of the objective optimization problem
min
Q2Rn�k

jjA� QQ T jjSp þ ajjQ jjSq ð11Þ
is attained at Q � ¼ U kð Þ
A KkV

T
k where Kk ¼ diag K1; � � � ;Kkð Þ is computed by the following vector optimization problem
min
Kk

Xk
i¼1

jrji �K2
i jp þ

X
jiR j1 ;���;jkf g

rp
ji

" #1=p
þ a

Xk
i¼1

jKijq
" #1=q

: ð12Þ
Here, U kð Þ
A is the corresponding columns of UA indexed by j1; � � � ; jkf g, and Vk 2 Rk�k is an arbitrary orthogonal matrix.
Proof. Since Schatten norm is unitarily invariant, according to Theorem 1, the optimal solution to Problem 11 has the form

Q � ¼ U kð Þ
A KkV

T
k . It is noted that Q �Q �T ¼ U kð Þ

A KkV
T
k

h i
U kð Þ

A KkV
T
k

h iT
¼ U kð Þ

A K2
kU

kð Þ
A

T
. Without loss of generality, we assume that U kð Þ

A

is the corresponding columns of UA indexed by j1; � � � ; jkf g and U
�

kð Þ
A 2 Rn� n�kð Þ is its complement, then

U kð Þ
A K2

kU
kð Þ
A

T ¼ U kð Þ
A ;U

�
kð Þ
A

h i
K2

k Ok� n�kð Þ
O n�kð Þ�k O n�kð Þ� n�kð Þ

� 	
U kð Þ

A ;U
�

kð Þ
A

h iT
. Accordingly, jjA� QQ T jjSp ¼

Pk
i¼1jrji �K2

i jp þ
P

jiR j1 ;���;jkf gr
p
ji

h i1=p
,

completing the proof.
The above theorem provides a method to solve the optimization problem, however this method is computationally time-

consuming. The following lemma is proposed to alleviate the optimization difficulty.

Lemma 2. Suppose r1 P r2 P � � � P rkþ1;K ¼ K1; � � � ;Kk½ � and p P 1; q P 1;aP 0, then it holds
min
K

Xk
i¼1

jri �K2
i jp þ rp

kþ1

" #1
p

þ a
Xk
i¼1

jKijq
" #1

q

6

min
K

Xk
i¼2

jri �K2
i jp þ jrkþ1 �K2

1jp þ rp
1

" #1
p

þ a
Xk
i¼1

jKijq
" #1

q

:

ð13Þ
Proof. The inequality is evidently true if jr1 � K2
1jp þ rp

kþ1 6 jrkþ1 �K2
1jp þ rp

1 for any K1 6 r1 with given r1 P rkþ1. Actu-

ally, denote f K1ð Þ ¼ jrkþ1 �K2
1jp þ rp

1 � jr1 �K2
1jp þ rp

kþ1

� �
¼ rkþ1 �K2

1

� �p
þ rp

1 � r1 �K2
1

� �p
� rp

kþ1, then we know

df K1ð Þ
dK1

¼ 2pK1 r1 �K1ð Þp�1 � rkþ1 �K1ð Þp�1
h i

P 0. Hence, it is evident that min
K12 0;rkþ1½ �

f K1ð Þ P f 0ð Þ ¼ 0, which implies that the

inequality holds, completing the proof.
According to the aforementioned lemmas, the nearly closed-form solution to the objective optimization problem is

explored.
5
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Theorem 3. For a given affinity matrix A 2 Rn�n with UA;RA;VAð Þ ¼ svd Að Þ, the minimizer of the objective optimization problem
min
Q2Rn�k

jjA� QQ T jjSp þ ajjQ jjSq ð14Þ
has a (nearly) closed-form solution Q � ¼ U kð Þ
A KkV

T
k where U kð Þ

A is the corresponding k-truncation of UA;Vk 2 Rk�k is an arbitrary
orthogonal matrix, and Kk ¼ diag K1; � � � ;Kkð Þ is solved by
min
Kk

Xk
i¼1

jri �K2
i jp þ

Xrank Xð Þ

j¼kþ1

rp
j

" #1=p
þ a

Xk
i¼1

jKijq
" #1=q

: ð15Þ
Proof. According to the inequality in Lemma 2, we obtain
min
Kk

Xk
i¼1

jri �K2
i jp þ

Xrank Xð Þ

i¼kþ1

rp
i

" #1=p
þ a

Xk
i¼1

jKijq
" #1=q

6

min
Kk

Xk
i¼1

jrji �K2
i jp þ

X
jiR j1 ;���;jkf g

rp
ji

" #1=p
þ a

Xk
i¼1

jKijq
" #1=q

:

ð16Þ
Together with Theorem 2, this completes the proof.
In order to obtain an explicit closed-form solution to the optimization problem, the following corollary is proposed to

solve the decoupled optimization.

Corollary 1. For a given affinity matrix A 2 Rn�n with UA;RA;VAð Þ ¼ svd Að Þ, the minimizer of the objective optimization problem
min
Q2Rn�k

1
p
jjA� QQ T jjpSp þ

2a
q

jjQ jjqSq ð17Þ
has a (nearly) closed-form solution Q � ¼ U kð Þ
A KkV

T
k where U kð Þ

A is the corresponding k-truncation of UA;Vk 2 Rk�k is an arbitrary
orthogonal matrix, and Kk ¼ diag K1; � � � ;Kkð Þ is computed by
min
Kk

1
p

Xk
i¼1

jri �K2
i jp þ

2a
q

Xk
i¼1

jKijq: ð18Þ
With the aforementioned analyses in details, closed-form solutions to the data representation problem with specific val-
ues of p and q are provided in Table 1. Besides, the procedure for the problem is summarized in Algorithm1.

Algorithm1: DRWDR: Deep Random Walk based Data Representation.

Input: Data matrix X 2 Rn�d and the number k of reduced dimensions.
Output: A low-dimensional representation Q 2 Rn�k.
1: Initialize hyper-parameters including step number t, decay factor c, regularization coefficient a and Schatten norm

indicators p and q;
2: Construct the probability transition matrix P 2 Rn�n by kernel evaluation and matrix normalization;
3: Compute the overall affinity matrix A 2 Rn�n with deep random walk using Eq. (5);
4: Solve the diagonal matrix Kk 2 Rk�k in Problem (18) with a vector optimization method;
5: Reconstruct the low-dimensional data representation Q 2 Rn�k using the closed-form solution given in Theorem (3);
6: returnData representation Q .

The computational complexity of the probability transition matrix construction is O dn2
� �

, and that of overall affinity

matrix evaluation needs O n3
� �

. Besides, the complexities of the vector optimization and low-dimensional reconstruction
require O n3

� �
. Accordingly, the overall computational complexity of the proposed method is O n2 nþ dð Þ� �

.

4. Experimental analysis

In this section, extensive experiments are conducted to verify the effectiveness and efficiency of the proposed method.
Here, the test data sets range from face and digit images to gene expressions and text documents, which provides a reliable
test platform for algorithm comparisons.
6



Table 1
Closed-form solutions to data representation problems of decoupled forms with some specific p and q. Denote UA;RA;VAð Þ ¼ svd Að Þ.

Schatten norm p and q Optimal solution Q � ¼ U kð Þ
A Kk

p ¼ 1; q ¼ 2
Kk ¼ R kð Þ

A

h i1=2
ifa 2 0;1ð �; andKk ¼ 0ifa 2 1;1ð Þ

p ¼ 2; q ¼ 2
Kk ¼ R kð Þ

A � aI
� �

þ

� 	1=2
p P 2; q ¼ 2

Kk ¼ R kð Þ
A � a

1
p�1I

� �
þ

� 	1=2
p ¼ 1; q ¼ 2m > 2 Kk ¼ a�1= q�2ð ÞI
p ¼ m; q ¼ 2m P 2

Kk ¼ 1
1þa1= m�1ð Þ R

kð Þ
A

h i1=2
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4.1. Data sets

All test data sets are derived from publicly available machine learning repositories, aiming at providing a fair test bed for
the compared data representation methods. Each data set is characterized in more details, shown as follows.

ORL consists of 400 face images from 40 distinct individuals 1. These images were taken with varying facial expressions as
the lightening and background differ. Each sample is a 4,096-dimensional feature vector, reshaped by a 64�64 gray-scale image.

FEI is a Brazilian face database that was taken against a white homogenous background 2. There are 200 characters for
each of 14 images, a total of 2,800 images. Each image was cropped to the size of 60�80�3 pixels, forming a 14,400-
dimensional feature vector.

GISETTE is a digit recognition data set that aims to make a distinction between two highly confusible digits ‘4’ and ‘9’ 3.
Each digit image contains 5,000 features, where a large number of irrelevant and noisy features without predictive power were
created and only a small percentage of features are discriminative.

MNIST is a subset of the distinguished handwritten digit recognition database 4. The digits with a total of 4,000 images
were size-normalized and centered in a fixed-size gray level of 28�28 pixels. This database contains 10 classes with varying
scenes of skewing, noisy and blurring images.

USPS is a popular subset consisting of 9,298 handwritten digit images in total, each corresponding to a gray-scale level of
16�16 pixels which constructs a 256-dimensional feature vector 5. Due to low resolutions, it is a widely used challenging
image recognition database as well.

CLLSUB is a microarray data set to identify molecular correlates of genetically and clinically distinct subgroups of B-cell
chronic lymphocytic leukemia 6. Gene expression profiling is used to gain frequent genomic aberrations for 11,340 features in
total.

CNAE is a database containing 1,080 free text documents from business descriptions of Brazilian companies 7. Each doc-
ument was represented by an 856-dimensional feature vector, where each feature value was the frequency of one word
occurred in the document.

TDT2 is a subset of the well-known TDT corpus comprising 2 newswires, 2 radio programs and 2 television programs 8. In
this data set, only the largest 30 categories were preserved, a total of 9,394 documents. Each document was represented as a
feature vector, corresponding to the frequencies of terms.

With the aforementioned detailed characterization to all test data sets, a summarization is provided as well, outlined in
Table 2.
4.2. Parameter settings

In order to validate the effectiveness and efficiency of the proposed method DRWDR, a number of state-of-the-art data
representation methods are compared. The compared methods include baseline method, principal component analysis
(PCA), locally linear embedding (LLE) [33], locality preserving projection (LPP) [14], neighborhood preserving embedding
(NPE) [13], Laplacian Eigenmaps (LE) [2], auto-encoder (AE) [15], isometric feature mapping (ISOMAP) [36], discriminative
unsupervised dimensionality reduction (DUDR) [44], robust structured subspace learning (RSSL) [22], and sparse multi-
graph embedding (SMGE) [41].
1 http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
2 https://fei.edu.br/ cet/facedatabase.html
3 http://archive.ics.uci.edu/ml/datasets/Gisette
4 http://yann.lecun.com/exdb/mnist/
5 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
6 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE2466
7 http://archive.ics.uci.edu/ml/datasets/CNAE-9
8 http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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Table 2
A brief description of the test data sets.

ID Data sets # Samples # Features # Classes Data types

1 ORL 400 4,096 40 Face image
2 FEI 2,800 14,400 200 Face image
3 GISETTE 7,000 5,000 2 Digit image
4 MNIST 4,000 784 10 Digit image
5 USPS 9,298 256 10 Digit image
6 CLLSUB 111 11,340 3 Gene expression
7 CNAE 1,080 856 9 Text document
8 TDT2 9,394 36,771 30 Text document
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For all compared methods, their default settings are preserved if feasible. As an example, the numbers of the nearest
neighbors for LLE, LPP and NPE are fixed as 5, and the sample affinity matrices are evaluated by Gaussian kernel. It is noted
that the number of the nearest neighbors will be modified as a large value when the corresponding method comes to badly
singular matrices. For RSSL, the initial label prediction matrix F, linear transformation matrix Q and projection matrix P are
generated randomly. For DUDR, the predefined number of clusters is set as that of classes. Since RSSL and DUDR are quite
time-consuming, the top 4,000 features are selected for algorithm comparisons on the large-scale data sets FEI and TDT2.
As to the proposed method DRWDR, the regularization parameter is tuned as a ¼ 0:1.

In order to provide a fair comparison for all tested data representation methods, aside from the aforementioned default
settings, feature numbers range in 10;15; � � � ;100f g. The low-dimensional data representation by any compared method is
evaluated using its K-means clustering performance, in which three evaluation metrics, including clustering accuracy (ACC),
normalized mutual information (NMI) and adjusted rand index (ARI), are jointly employed for a comprehensive assessment.
Because the K-means clustering is sensitive to initial inputs, it performs repeatedly 20 times, and we report their mean val-
ues and standard deviations.
4.3. Experimental results

The best clustering performance of all compared data representation approaches is reported in this subsection, where
Tables 3–5 are presented for ACC, NMI and ARI, respectively. From these three tables, we can draw the following observa-
tions. In the first place, data representation methods are efficient in the performance boost of learning tasks. Overall, an
encouraging low-dimensional representation achieves a significant increase in terms of the clustering performance, which
can be observed from almost entire test data sets. Compared with the baseline method, there is a rise of nearly 50% with
regard to clustering accuracy and adjusted rand index for quite a few data sets (e.g. FEI, CNAE and TDT2). There is one more
point, the proposed method DRWDR gains the best clustering performance in the test data sets. In addition, it is superior to
the second best method by a great deal in some certain data sets (e.g. GISETTE and CNAE). One potential reason is that the
proposed method DRWDR learns a discriminative compact low-dimensional representation by the unitary invariance min-
imization. Simultaneously, deep random walk evaluates a more accurate sample affinity matrix. The last but not the least,
varying data representation methods come with respective strengths in different data sets. As an example, DUDR yields the
best clustering performance in the data set CLLSUB, though it comes with undesired performance in most of other data sets.
Besides, it is suggested that SMGE attains promising clustering performance in a slice of data sets (e.g. ORL, USPS and TDT2)
while ISOMAP works favorably in the data sets GISETTE and USPS.

The time complexities and actual running times of all compared data representation methods are shown in Tables 6,7. It is
noted that PCA, LLE, LPP and NPE are also solved with closed-form solutions. Overall, the data representation methods having
closed-form solutions come with less running times on the test data sets. Certainly, the proposed method DRWDR performs
with an acceptable running time since it is provided with an almost closed-form solution. On the contrary, AE, DUDR, and
RSSL consume more running times to obtain optimal solutions. This may account for the reason that matrix closed-form
solutions are easy to be optimized and accelerated with some parallel computing techniques.
4.4. Parameter sensitivities

The proposed data representation method DRWDR is composed of several algorithmic parameters, including feature
numbers of the reduced subspace, step numbers of the deep random walk, decay factor c, Schatten norm indicators p and
q, and regularization coefficient a. In this subsection, it is examined whether DRWDR is sensitive to these hyper-parameters.

The learning performance of the proposed method DRWDR is reported in Figs. 2–4 for ACC, NMI and ARI of entire data
sets. In the three figures, algorithmic parameters are constrained to feature number k 2 10;20; � � � ;90f g and step number
t 2 1;2; � � � ;9;1f g, while fixing regularization coefficient a ¼ 0:1, decay factor c ¼ 0:8 and Schatten norm indicator p ¼ 5
and q ¼ 2. Here, 1 represents the infinite number of probability transition steps. From these three figures, we can draw a
number of beneficial observations. The first and foremost, a large step number significantly improves the clustering perfor-
mance of DRWDR, which can be observed from the fact that DRWDR comes with pleasurable results with t P 2. In contrast,
8



Table 3
Clustering accuracy of compared data representation methods (mean% 	 std%). The best results are marked in bold.

Method/ Data ORL FEI GISETTE MNIST USPS CLLSUB CNAE TDT2

Baseline 49.2 ± 2.5 31.2 ± 1.1 70.4 ± 0.2 51.7 ± 3.8 67.4 ± 6.7 44.5 ± 9.0 40.9 ± 7.2 33.0 ± 1.0
PCA 51.7 ± 2.5 36.4 ± 0.5 57.4 ± 0.1 52.1 ± 2.1 68.9 ± 5.8 48.1 ± 8.8 48.0 ± 7.4 48.1 ± 4.6
LLE 60.0 ± 3.7 36.9 ± 0.5 72.1 ± 9.9 38.3 ± 6.5 55.4 ± 6.9 46.9 ± 0.6 14.7 ± 1.1 19.9 ± 0.1
LPP 48.9 ± 1.8 49.1 ± 0.6 72.4 ± 9.8 51.9 ± 3.7 66.9 ± 3.3 47.0 ± 0.6 51.2 ± 3.6 20.7 ± 0.1
NPE 61.5 ± 1.4 44.5 ± 0.6 62.0 ± 9.6 50.9 ± 2.3 65.5 ± 1.1 51.4 ± 2.0 50.9 ± 6.2 26.0 ± 5.1
LE 53.3 ± 1.7 42.1 ± 0.5 71.9 ± 6.9 56.6 ± 3.7 66.7 ± 7.1 47.7 ± 2.8 55.9 ± 5.8 51.9 ± 3.1
AE 45.9 ± 2.0 31.3 ± 0.6 71.7 ± 6.6 53.4 ± 1.0 69.4 ± 2.9 47.8 ± 0.0 34.6 ± 1.0 50.9 ± 0.6
ISOMAP 49.3 ± 2.2 32.5 ± 0.5 82.5 ± 0.2 54.8 ± 3.6 69.0 ± 4.0 52.3 ± 0.0 53.2 ± 5.6 33.5 ± 1.6
DUDR 54.3 ± 0.0 43.3 ± 0.0 78.5 ± 0.0 26.4 ± 0.6 37.5 ± 1.4 55.0 ± 0.0 37.8 ± 2.2 42.0 ± 4.3
RSSL 54.1 ± 2.1 34.0 ± 0.4 68.8 ± 9.2 55.0 ± 5.9 63.7 ± 1.8 42.0 ± 1.7 51.8 ± 7.3 41.0 ± 4.0
SMGE 63.5 ± 1.9 36.6 ± 0.8 70.8 ± 9.1 59.8 ± 5.2 68.2 ± 6.8 49.2 ± 7.7 52.8 ± 9.4 61.3 ± 9.8
DRWDR 64.3 ± 1.9 49.8 ± 0.7 86.2 ± 9.9 64.2 ± 3.8 69.6 ± 6.0 52.6 ± 0.4 58.6 ± 6.0 65.2 ± 2.4

Table 4
Normalized mutual information of compared data representation methods (mean% ± std%). The best results are marked in bold.

Method/ Data ORL FEI GISETTE MNIST USPS CLLSUB CNAE TDT2

Baseline 67.0 ± 1.5 68.9 ± 0.6 13.3 ± 0.2 45.6 ± 2.4 65.4 ± 2.1 11.8 ± 5.9 32.9 ± 6.3 30.2 ± 1.6
PCA 71.5 ± 0.9 71.1 ± 0.4 1.57 ± 0.1 48.3 ± 1.6 65.9 ± 1.7 16.0 ± 9.1 42.1 ± 4.5 63.0 ± 2.0
LLE 78.8 ± 1.7 67.8 ± 0.7 23.5 ± 2.0 42.2 ± 6.5 49.5 ± 7.8 8.64 ± 4.8 13.9 ± 1.1 10.0 ± 1.1
LPP 68.8 ± 1.1 77.5 ± 0.4 26.4 ± 9.5 46.8 ± 2.0 64.4 ± 1.9 2.30 ± 0.7 48.2 ± 4.5 12.1 ± 1.0
NPE 78.1 ± 1.1 74.1 ± 0.3 22.9 ± 9.0 43.1 ± 2.4 65.2 ± 1.5 16.1 ± 4.1 46.2 ± 4.6 18.6 ± 4.3
LE 72.5 ± 1.2 73.0 ± 0.2 25.4 ± 9.5 56.4 ± 1.9 67.2 ± 4.9 4.39 ± 0.4 50.1 ± 3.7 67.4 ± 0.7
AE 68.4 ± 1.2 68.2 ± 0.3 16.4 ± 5.7 45.4 ± 1.1 66.6 ± 1.7 1.81 ± 0.0 27.1 ± 1.5 44.2 ± 0.5
ISOMAP 70.6 ± 0.7 67.8 ± 0.4 37.9 ± 0.4 50.6 ± 2.0 73.1 ± 1.7 18.0 ± 0.0 48.4 ± 3.8 34.9 ± 1.2
DUDR 70.0 ± 0.0 60.9 ± 0.0 24.8 ± 0.0 20.8 ± 0.2 40.7 ± 0.1 26.3 ± 0.0 23.2 ± 1.6 36.8 ± 2.7
RSSL 70.7 ± 1.8 69.5 ± 0.4 19.7 ± 9.9 58.5 ± 5.8 57.5 ± 0.7 2.47 ± 0.2 48.9 ± 7.8 36.3 ± 3.6
SMGE 70.6 ± 0.7 68.7 ± 0.6 25.0 ± 9.5 62.3 ± 2.7 68.6 ± 2.5 12.3 ± 5.0 53.6 ± 8.7 51.7 ± 9.6
DRWDR 80.4 ± 1.0 77.0 ± 0.3 53.4 ± 9.4 63.4 ± 2.4 81.9 ± 3.2 16.2 ± 1.5 54.4 ± 4.7 65.8 ± 1.1

Table 5
Adjusted rand index of compared data representation methods (mean% ± std%). The best results are marked in bold.

Method/ Data ORL FEI GISETTE MNIST USPS CLLSUB CNAE TDT2

Baseline 31.8 ± 2.7 20.6 ± 0.9 16.6 ± 0.3 33.1 ± 3.5 57.1 ± 3.5 3.25 ± 0.6 19.0 ± 4.7 2.11 ± 1.0
PCA 36.0 ± 1.4 23.6 ± 0.6 2.15 ± 0.1 35.2 ± 2.0 57.7 ± 2.9 6.06 ± 0.7 26.4 ± 5.9 34.9 ± 5.5
LLE 48.4 ± 3.7 16.7 ± 1.0 25.0 ± 9.9 27.3 ± 8.6 44.2 ± 8.3 3.01 ± 0.7 1.20 ± 0.1 5.30 ± 0.1
LPP 31.1 ± 1.7 33.9 ± 1.2 26.6 ± 9.4 33.9 ± 2.6 53.2 ± 3.2 1.10 ± 0.1 28.1 ± 6.0 6.00 ± 1.0
NPE 46.8 ± 1.7 25.9 ± 0.9 21.9 ± 9.3 29.5 ± 1.7 56.1 ± 1.9 7.67 ± 0.4 24.1 ± 5.6 2.96 ± 0.4
LE 38.2 ± 2.8 27.4 ± 0.4 21.0 ± 9.3 42.6 ± 1.9 58.2 ± 9.1 2.85 ± 0.5 31.4 ± 5.2 40.6 ± 2.9
AE 30.7 ± 2.4 18.2 ± 1.3 20.3 ± 7.1 33.5 ± 1.0 50.6 ± 5.5 1.19 ± 0.0 18.2 ± 7.2 36.3 ± 0.5
ISOMAP 34.3 ± 1.5 18.3 ± 0.8 42.2 ± 0.5 37.8 ± 2.8 65.7 ± 3.1 8.58 ± 0.0 30.6 ± 2.8 16.4 ± 1.0
DUDR 19.4 ± 0.0 29.7 ± 0.0 32.4 ± 0.0 18.4 ± 0.1 25.1 ± 1.3 12.4 ± 0.0 14.1 ± 1.0 13.4 ± 2.2
RSSL 28.5 ± 4.5 20.9 ± 0.4 16.1 ± 3.5 41.8 ± 4.8 49.6 ± 1.1 3.66 ± 0.4 25.7 ± 5.5 13.4 ± 2.1
SMGE 44.4 ± 2.6 20.3 ± 0.9 21.0 ± 9.3 47.5 ± 4.8 58.1 ± 5.9 4.48 ± 0.7 30.1 ± 2.4 42.1 ± 9.4
DRWDR 47.5 ± 3.7 34.4 ± 1.0 58.3 ± 9.6 50.0 ± 4.0 67.7 ± 6.3 8.29 ± 0.3 34.9 ± 6.2 53.7 ± 2.5

Table 6
Computational complexities of compared data representation methods.

Method Baseline PCA LLE LPP NPE LE

Complexity O ndð Þ O n2 nþ dð Þ� �
O n3
� �

O d2 nþ dð Þ
� �

O n3 þ d3
� �

O n3
� �

Method AE ISOMAP DUDR RSSL SMGE DRWDR
Complexity O ndð Þ O n2d

� �
O d2 þ n2
� �

O d2 nþ dð Þ
� �

O n2 nþ dð Þ� �
O n2 nþ dð Þ� �
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DRWDR works unacceptably by setting t ¼ 1, which may be indicative of how to accurately evaluate an affinity matrix of
given data points. There is one more point, excessively large step number may leave a negative effect on the clustering per-
formance, which can be validated by the fact that the step number t ¼ 1 gives rise to an undesired performance in the data
sets GISETTE, MNIST, USPS and CNAE. The last but not the least, the proposed method DRWDR is inclined to attaining the
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Table 7
Running times of all compared data representation methods (in seconds).

Method/ Data ORL FEI GISETTE MNIST USPS CLLSUB CNAE TDT2

Baseline 0.21 24.23 7.79 0.61 1.17 0.05 0.17 1.47
PCA 1.10 4.53 7.21 0.07 0.05 0.01 0.14 51.63
LLE 336.91 8.45 125.25 24.21 212.51 0.21 56.02 255.69
LPP 22.31 18.16 130.57 0.44 7.28 0.02 0.25 383.40
NPE 282.73 57.96 29.05 1.79 34.10 0.10 0.61 349.37
LE 1.55 4.64 40.21 6.00 18.99 0.22 0.54 53.51
AE 239.37 989.31 373.72 104.62 47.45 260.03 23.09 6040.78

ISOMAP 0.31 23.28 301.66 56.39 534.66 0.04 2.14 574.64
DUDR 327.53 700.39 6605.70 49.27 372.3 3844.30 8.00 8026.60
RSSL 1284.88 2523.43 2743.2 62.88 161.32 1114.42 25.77 2682.07
SMGR 18.10 124.30 316.43 173.38 404.68 5.28 47.68 440.89
DRWDR 0.09 7.62 120.38 22.31 282.69 0.03 0.42 292.27

Fig. 2. The relations among clustering accuracy, feature number ranging in 10;20; � � � ;90f g and step number in 1;2; � � � ;9;1f g of the proposed method
DRWDR.
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best clustering performance with a smaller number of dimensions of the learned feature subspace. This is owing to the
observation that DRWDR works best in the data sets MNIST, USPS and CNAE while the feature number is tuned as k ¼ 10.

The clustering performance of the proposed method DRWDR is presented in Fig. 5 while the decay factor c ranges in
0:05;0:1; � � � ;0:9;0:95f g with keeping regularization coefficient a ¼ 0:1 and step number t ¼ 5. For convenience, the figure
is a collection of the best performance as the number of reduced features varies in 5;10; � � � ;95;100f g. It is observed from
this figure that DRWDR behaves unfavorably with 0 < c < 0:5. In another word, a small value of decay factor c leads to a
trivial performance, which is straightforward to be explained in that c is indicative of the tendency of a promotional message
to lose its effectiveness over time, and a small c suggests a low preservation of current indispensable information. Overall,
DRWDR results in a robust acceptable clustering performance as parameter c ranges in 0:5; 0:55; � � � ; 0:9;0:95f g.

As the feature number fluctuates in 5;10; � � � ;95;100f g, the relation between clustering performance of the proposed
method DRWDR and Schatten norm indicator p 2 1;2; � � � ;9f g is illustrated in Fig. 6, while fixing q ¼ 2, decay factor
c ¼ 0:8, and regularization parameter a ¼ 0:1. It is observed from this figure that DRWDR brings about varying clustering
performance with different values of p. As an example, DRWDR works best with p ¼ 6 in the data set GISETTE and with
p ¼ 8 in USPS. But overall, it performs favorably in the selected wide range, which is suggestive of the robustness of the pro-
posed method in some sense.
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Fig. 4. Relations among adjusted rand index, feature number in 10;20; � � � ;90f g and step number in 1;2; � � � ;9;1f g of the proposed method DRWDR.

Fig. 3. The relations among normalized mutual information, feature number ranging in 10;20; � � � ;90f g and step number in 1;2; � � � ;9;1f g of the proposed
method DRWDR.
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5. Conclusion and future work

In this paper, we proposed a matrix factorization method based on deep random walk for data representation problems.
In the first place, unitarily invariant norm minimization was embedded into the formulated problem framework, which was
suggestive of how to learn an adaptive distance metric. There was one more point that the deep random walk was used to
11



Fig. 6. The connection between clustering performance and Schatten norm p in 1;2; � � � ;9f g of the proposed method DRWDR while fixing q ¼ 2.

Fig. 5. The connection between clustering performance and decay factor c in 0:05;0:1; � � � ;0:90;0:95f g of the proposed method DRWDR.
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evaluate a more accurate affinity matrix and learn a nonlinear multi-scale data representation. The last but not the least, a
new optimization algorithm with guaranteed convergence was put forward. The proposed method was solved by a nearly
closed-form solution and succeeded in addressing data representation problems by capturing multi-view distributions hid-
den in data. Moreover, the model was applied to clustering tasks, and experimental results demonstrated that it was superior
to both traditional and state-of-the-art approaches. Nevertheless, a major problem of the proposed method to be further
improved is that the singular value decomposition requires relatively intensive computational complexity, which is the most
time-consuming module when handling large-scale data representation problems.
12
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In the future work, we will view the unitary invariance as a surrogate of adaptive distance metrics to learn a compact data
representation. On the other hand, we will attempt to find more efficient alternatives to decrease the computational com-
plexity of the proposed method. As an example, constructing differentiable blocks for the optimization variables makes them
learnable in a neural network. Besides, we will further exploit the relationship between unitarily invariant norm minimiza-
tion and sparse regularizer embedding.
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