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Abstract—The low-rank matrix completion has gained rapidly
increasing attention from researchers in recent years for its
efficient recovery of the matrix in various fields. Numerous
studies have exploited the popular neural networks to yield
low-rank outputs under the framework of low-rank matrix
factorization. However, due to the discontinuity and nonconvexity
of rank function, it is difficult to directly optimize the rank
function via back propagation. Although a large number of
studies have attempted to find relaxations of the rank function,
e.g., Schatten-p norm, they still face the following issues when
updating parameters via back propagation: 1) These methods or
surrogate functions are still non-differentiable, bringing obstacles
to deriving the gradients of trainable variables. 2) Most of
these surrogate functions perform singular value decomposition
upon the original matrix at each iteration, which is time-
consuming and blocks the propagation of gradients. To address
these problems, in this paper, we develop an efficient block-
wise model dubbed differentiable low-rank learning (DLRL)
framework that adopts back propagation to optimize the Multi-
Schatten-p norm Surrogate (MSS) function. Distinct from the
original optimization of this surrogate function, the proposed
framework avoids singular value decomposition to admit the
gradient propagation and builds a block-wise learning scheme
to minimize values of Schatten-p norms. Accordingly, it speeds
up the computation and makes all parameters in the proposed
framework learnable according to a predefined loss function.
Finally, we conduct substantial experiments in terms of image
recovery and collaborative filtering. The experimental results
verify the superiority of the proposed framework in terms of
both runtimes and learning performance compared with other
state-of-the-art low-rank optimization methods. Our codes are
available at https://github.com/chenzl23/DLRL.

Index Terms—Low-rank matrix completion, back propagation,
image recovery, collaborative filtering, Schatten-p norm.

I. INTRODUCTION

LOW-RANK matrix optimization is a crucial technique
in machine learning, which has been broadly studied by

researchers in various fields, including recommender systems
[1], [2], computer vision [3], [4] and low-rank representation
[5], [6]. Low-rank learning has also been extensively explored
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in multimedia scenarios. For instance, Wang et al. extracted
a shared low-rank correlation embedding to conduct multi-
feature fusion in subspace learning fields [7]. Jing et al. studied
low-rank multi-view embedding to facilitate the performance
of micro-video popularity prediction [8]. A tripartite graph reg-
ularized latent low-rank representation approach was presented
to predict fashion compatibility in shopping websites [9]. As
an example, existing research and practice have validated that
rating matrices in recommender systems and pixel matrices
of RGB images are generally low-rank, because the primary
information of these matrices is dominated by top singular
values, which only account for a small part of all singular
values. Therefore, missing values of incomplete matrices can
be recovered by leveraging the low-rank property.

Generally low-rank matrix completion can be realized by
matrix factorization approaches and rank optimization ap-
proaches, respectively. Matrix factorization approaches de-
compose the original incomplete matrix into two or multiple
factors that are low-rank, and recover the missing entries
in the original matrix with the product of these factors. A
large amount of research has been devoted to this field [10],
[11]. As to the rank optimization approaches, because rank
minimization problems are nonconvex and discontinuous, they
are generally NP-hard and difficult to cope with. Numerous
surrogate approximation functions have been employed in
addressing this problem. Theoretical analyses have revealed
that the nuclear norm is a convex lower bound of the rank
function, which sums up all singular values of the matrix
[12], [13], [14]. In other words, the nuclear norm is an `1-
norm relaxation on singular values compared with the rank
operator that is relevant to `0-norm. The optimization problem
raised by nuclear norm-based methods can be solved by
the Lagrangian multiplier method [15], alternating direction
method of multiplier [16] or proximal mapping algorithm [17].
However, these nuclear norm-based methods ordinarily lead to
suboptimal performance because they may not be a suitable
rank relaxation of `0-norm in some practical applications [18].

To overcome these drawbacks, a lot of nonconvex relax-
ation functions for rank minimization have been proposed to
better approximate the rank function. Some nonconvex surro-
gates of `0-norm including `p-norm [19], Minimax Concave
Plus (MCP) [20] and Smoothly Clipped Absolute Deviation
(SCAD) [21] have been extended to relax the rank function, as
listed in [22]. A number of researchers developed the nuclear
norm with truncated nuclear norm-based or weighted nuclear
norm-based methods [23], [24]. In addition, Schatten-p norm
which unifies different norm formulations, has been widely
investigated in rank optimization problems. The weighted
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Schatten-p norm minimization was put forward to tackle the
applications to image denoising and background subtraction
[25]. The multi-channel weighted Schatten-p norm minimiza-
tion method was presented for image denoising upon RGB
channels [26]. A modified Schatten-p norm in the affinity
matrix rank minimization problem was developed to solve
image recovery and recommender system problems [27]. It is
noteworthy that the widely employed nuclear norm is a special
case of Schatten-p norm when p = 1. Some prior works have
pointed out that Schatten-p norm was a tighter approxima-
tion of rank function when p → 0 [28]. Thus, Schatten-p
norm is beneficial to constructing a more generalizing low-
rank optimization framework. Experimental results of previous
works also demonstrated that algorithms with Schatten-p norm
outperformed nuclear norm-based methods [27], [29], [30].

However, it is universally acknowledged that most of these
Schatten-p norm-based methods are confronted with a tricky
problem that these optimization procedures entail conducting
singular value decomposition (SVD) of the matrix at each
iteration. This leads to severe time complexity and is inefficient
for the matrix with high dimensions. Considerable neural
network-based frameworks also require to yield low-rank out-
put to conduct basic machine learning tasks like low-rank ma-
trix completion [31]. In general, these methods were developed
via the matrix factorization techniques, which decomposed the
original matrix into two or multiple low-rank matrices [32].
Indeed, these frameworks only implicitly optimize the matrix
rank under the assumption that data matrix should be low-rank,
lacking a theoretical guarantee for minimizing the values of
rank functions or other surrogates. However, back propagation
that is widely used in neural network-based methods generally
can not handle the rank optimization problem due to the
nondifferentiability of SVD computation. To our knowledge,
very limited research has been devoted to minimizing values
of rank function with back propagation.

Some previous studies have attempted to construct neural
networks or differentiable block-wise learning strategies ac-
cording to some well-established optimization methods, which
inspire us to convert the traditional iterative optimization
algorithm into differentiable learning steps. Gregor and LeCun
proposed Learned Iterative Shrinkage Thresholding Algorithm
(LISTA) to unfold ISTA into block-wise neural networks and
considered some variables as trainable weights without bias,
which was applied to solve sparse coding problems [33].
Inspired by LISTA, Zhang et al. also cast ISTA into a deep
learning form according to proximal mapping that optimized
sparsity-inducing regularizer in a distinct way [34], termed as
ISTA-Net. Yang et al. projected the iterations of ADMM into
a data flow graph, according to which they established a deep
ADMM-Net [35]. Du et al. constructed differentiable neural
networks inspired by alternating iterative optimization and
applied it to multi-view co-clustering [36]. Xie et al. reviewed
linearized ADMM and replaced some intermediate variables
with trainable layers to present the Differentiable Linearized
ADMM (D-LADMM) [37]. Wang et al. transformed the
proximal gradient method into differentiable neural networks
to learn data-driven sparse regularizers [38]. These methods
succeeded in obtaining remarkable performance of some well-

known optimization problems via setting variables as trainable
parameters and updating them via back propagation.

In this paper, we propose an efficient end-to-end learning
framework to solve the matrix completion problem with opti-
mization on Multi-Schatten-p norm Surrogate (MSS) function,
which copes with the rank optimization problem explicitly
over multiple factorized factors. In order to avoid conducting
SVD at every iteration, we reformulate the proximal mapping
problem with Lagrangian function and convert it into differen-
tiable learning steps which contain some trainable variables.
Furthermore, the optimization of MSS is reconstructed by the
block-wise learning strategy, and all parameters are learned
via back propagation. We also analyze the convergence of
Schatten-p norm for the proposed method to ensure that DLRL
can yield low-rank outputs. The main contribution of this paper
includes the following three aspects:

1) Block-wise differentiable learning steps are proposed
to handle the low-rank matrix recovery problem, dubbed
Differentiable Low-Rank Learning (DLRL) framework.

2) Transform the universally utilized proximal mapping
methods into a basic learning scheme without conducting
SVD of inputs, which accelerates the computational speed and
allows back propagation.

3) As applications to image recovery and collaborative
filtering, substantial experimental results indicate the superior
performance of the proposed framework.

The rest of this paper proceeds as follows. A brief summary
of the relevant concepts and works in low-rank matrix comple-
tion are recalled in Section II. In Section III, a differentiable
learning method for low-rank matrix completion is proposed
based on MSS function, following theoretical analyses and
discussion. Comprehensive experiments on synthetic data and
practical applications are carried out to validate the effec-
tiveness of the proposed DLRL in Section IV. Finally, we
conclude our work in Section V.

II. RELATED WORK

A. Low-Rank Matrix Factorization Methods
With the assumption that data matrices in various machine

learning fields should be low-rank, a large number of matrix
factorization-based methods have been developed. The Non-
negative Matrix Factorization (NMF) algorithm [39] was con-
ducted by minimizing the distance as

arg minU,V≥0‖X−UVT ‖2F , (1)

where U ∈ Rm×d and V ∈ Rn×d are non-negative matrices.
Due to the reason that essential information is generally
encoded in a low-rank intrinsic data matrix, the factorization
of matrix demands for d� min(m,n).

In decades, a large number of methods for low-rank matrix
factorization have been explored. Lu et al. improved NMF
by considering structural incoherence and low-rank properties
of image data, and applied it to image classification [40].
Wang et al. proposed the Diverse NMF (DiNMF) method
to reduce the redundancy among multi-view representations
[41]. Nguyen et al. put forward a graph neural network-
based framework to exploit the underlying features by low-
rank matrix factorization [2]. Wang et al. incorporated rank

Authorized licensed use limited to: Fuzhou University. Downloaded on May 17,2022 at 05:37:47 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3124087, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA 3

optimization into a generalized low-rank matrix factorization
method [42]. Low-rank matrix factorization was leveraged to
compress the word embedding layers for deep learning models
of natural language processing [43]. Yang et al. introduced
a tensor factorization technique into the multi-view deep au-
toencoder to address multi-view representation learning [32].
Arora et al. pointed out that increasing depth to deep matrix
factorization enhanced an implicit tendency towards low-rank
solutions [31]. In a nutshell, low-rank matrix factorization
methods implicitly minimize the rank of data matrices by
exploring decomposed low-dimensional matrices.

B. Rank Optimization Methods

Matrix factorization-based methods optimize the rank of
matrix implicitly, while rank optimization methods directly
minimize approximations of the rank function. A generalized
rank optimization problem is formulated as

h(X) = f(X) + g(X), (2)

where f(X) is a differentiable function and g(X) is a
nonconvex and non-smooth regularization enforcing low-rank
constraint. A widely used rank regularization is the extended
Schatten-p norm, defined by

‖X‖Sp =

min{m,n}∑
i=1

σi(X)p

 1
p

=
(
Tr((XTX)

p
2 )
) 1

p

, (3)

where 0 < p < ∞ and σi(X) is the i-th singular value
of matrix X ∈ Rm×n. Then the general Schatten-p norm
minimization problem is denoted by

arg minXh(X) = f(X) + ‖X‖pSp
. (4)

In light of these definitions, Schatten-p norm is an `p-norm
constraint on singular values when 0 < p < 1. In particular, it
becomes widely employed nuclear norm or trace norm when
p = 1 and rank norm when p = 0. This problem can be solved
by proximal gradient descent algorithm [44], [37], where the
proximal mapping of ‖X‖pSp

is defined as

ProxSp(Y) = arg minX

1

2
‖X−Y‖2F +

1

p
‖X‖pSp

. (5)

To reduce time consumption, some existing methods have
attempted to search for surrogates of a specific p value with
matrix factorization. For instance, the surrogate for nuclear
norm (p = 1) [45], [46] has been widely investigated, defined
by

‖X‖∗ = arg minU,V:X=UVT

1

2
‖U‖2F +

1

2
‖V‖2F , (6)

where U ∈ Rm×d and V ∈ Rn×d with d � min(m,n).
Recent studies also proved the equality between decomposing-
based surrogate and Schatten-p norm when p = 2

3 and 1
2 [47],

[48], [49], as listed below:
3

2
‖X‖2/3

S2/3
= min

U,V:X=UVT
‖U‖∗ +

1

2
‖V‖2F ,

2‖X‖1/2
S1/2

= min
U,V:X=UVT

‖U‖∗ + ‖V‖∗.
(7)

Based on these previous studies, multi-Schatten-p norm sur-
rogate was investigated to unify these different decomposing-
based surrogates [28]. This inspires us to establish a block-
wise neural network where each block addresses a parameter-
ized factor as a subproblem.

III. DIFFERENTIABLE LOW-RANK LEARNING

In this section, we provide the details of the proposed
DLRL framework. For better understanding, primarily used
mathematical notations are recalled in advance. In the field of
low-rank matrix completion, X ∈ Rm×n is the incomplete
matrix, and the rank of matrix is defined by rank(·). The
observed matrix is denoted by X�H, where H is the binary
indicator matrix and � represents the Hadamard product. In
this paper, we approximate the rank by adopting Schatten-p
norm ‖X‖Sp

with the indicator p. With matrix factorization,
the low-rank approximated matrix X̂ is factorized into I factor
matrices {X̂i}Ii=1.

A. Multi-Schatten-p Norm Surrogate
Firstly, we review the MSS function [28]. Assuming that

Xi, i = 1, · · · , I are matrices where X1 ∈ Rm×d1 , Xi ∈
Rdi−1×di , i = 2, · · · , I − 1, XI ∈ RdI−1×n, and denoting
X =

∏I
i=1 Xi, rank(X) = r ≤ min{di, i = 1, · · · , I}, we

have

1

p
‖X‖pSp

= min
X=

∏I
i=1 Xi

I∑
i=1

1

pi
‖Xi‖pi

Spi
, (8)

where any pi > 0 satisfies 1
p =

∑I
i=1

1
pi

. Considering
Equation (8) as a surrogate of Schatten-p norm, minimization
problem defined in Equation (4) is transformed into

arg minX=
∏I

i=1 Xi
h(X) = f(X) +

I∑
i=1

1

pi
‖Xi‖pi

Spi
. (9)

This optimization problem can be solved by Block Coordinate
Descent (BCD) [50] which minimizes each Xi of Equation (9)
at a single iteration by fixing the remaining blocks. At each
iteration, the proximal gradient method for each factor Xi is
as follows:

X
(k+1)
i = arg minXi

f(X
(k)
i ) + 〈∇f(X

(k)
i ),Xi −X(k)〉

+
L

(k−1)
i

2

∥∥∥Xi −X
(k)
i

∥∥∥2

F
+

1

pi
‖Xi‖pi

Spi

= arg minXi

L
(k−1)
i

2
‖Xi −Yi‖2F +

1

pi
‖Xi‖pi

Spi
,

(10)

where Yi = X
(k)
i − 1

L
(k−1)
i

∇f(X
(k)
i ) and L

(k−1)
i is the

Lipschitz constant of ∇f(·), satisfying

‖∇f(X)−∇f(Y)‖F ≤ L
(k−1)
i ‖X−Y‖F , (11)

for any X,Y ∈ Rn×m. The optimization problem defined in
Equation (10) can be exactly solved by the proximal operation
that is related to Schatten-p norm, as follows:

X
(k+1)
i = ProxSpi

(
X

(k)
i − 1

L
(k−1)
i

∇f(X
(k)
i )

)
. (12)
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Because Schatten-p norm is an `p constraint on singular values
when 0 < p < 1, Equation (12) can be solved by some `p-
norm shrinkage algorithms or closed-form solutions for some
specific pi values. However, it is time-consuming because of
SVD at each iteration. As a matter of fact, a host of similar
methods based on Schatten-p norm function also suffer from
this issue.

B. Optimizing Multi-Schatten-p Norm Surrogate Function
with Neural Networks

We notice that the BCD method to optimize MSS function
is a block-wise solver naturally. It is similar to the block-wise
neural network structure in deep learning where each block
is differentiable and reusable. This motivates us to build a
similar end-to-end structure for learning low-rank constraints
with back propagation and gradient descent. In the first place,
the optimization of the matrix completion problem with MSS
function is formulated as

arg minXi,i=1,··· ,I
1

2

∥∥∥∥∥PΩ

(
I∏

i=1

Xi

)
− PΩ(X)

∥∥∥∥∥
2

F

+
I∑

i=1

1

pi
‖Xi‖pi

Spi
,

(13)

where X ∈ Rm×n is a given observed matrix. The pro-
jection PΩ(X) = H � X indicates the entries for training.

With f(X1, · · · ,XI) = 1
2

∥∥∥PΩ

(∏I
i=1 Xi

)
− PΩ(X)

∥∥∥2

F
and

g(X1, · · · ,XI) =
∑I

i=1
1
pi
‖Xi‖pi

Spi
, the gradient of f(Xi) at

Xi is given by

∇f(Xi) =

(X1 · · ·Xi−1)
T

(
H�

(
X−

I∏
i=1

Xi

))
(Xi+1 · · ·XI)

T
.

(14)

Inspired by BCD, the proposed method is constructed as a
framework with I differentiable neural network blocks, where
every block copes with a similar subproblem by going through
the same computation progress depending on Equations (12)
and (14).

Because the global Schatten-p norm minimization is trans-
formed into multiple subproblems solved with blocks, we now
only consider the local Schatten-p norm optimization problem
for each independent Xi in one block. Since it is problematic
to cope with Equation (12) with neural networks, whose solu-
tions are generally based on nondifferentiable SVD, we have
to explore another way to solve Equation (10). Optimization
of Equation (10) can be viewed as finding approximate Xi for
Yi with low-rank constraint. Therefore, we rewrite Equation
(10) with a constraint, as shown below:

arg minYi

1

pi
‖Yi‖pi

Spi
, s.t. Yi = Xi, (15)

where we directly optimize Yi. Actually, Equation (15) is
a strict version of optimization problem defined in Equation
(10). Associated with Equation (3), the solution of Equation

(15) can be derived from the Lagrangian function, which is
defined by

L(Yi,Λi) =
1

pi
Tr(YT

i Yi)
pi
2 − Tr(ΛT

i (Yi −Xi)), (16)

where Λi is the Lagrangian multiplier. Computing the deriva-
tive of L(Yi,Λi) w.r.t. Yi and setting the derivative to zero,
we have

∂L(Yi,Λi)

∂Yi
= 2Yi ·

1

2
(YT

i Yi)
pi−2

2 −Λi = 0, (17)

that is,

Λi = 2Yi ·
1

2
(YT

i Yi)
pi−2

2 . (18)

However, it is challenging to obtain a solution of Equation (18)
w.r.t. Yi. Therefore, we consider 1

2 (YT
i Yi)

pi−2

2 as a constant.
Letting Gi = 1

2 (YT
i Yi)

pi−2

2 , we obtain

Λi = 2YiGi, (19)

from which we can directly achieve an approximation of Yi

via Λi and Gi. According to Equation (19) and the constraint
Yi = Xi, we have

Λi = 2XiGi, (20)

which constructs the correspondence between the Lagrangian
multiplier Λi and approximate Xi. Namely,

Xi =
1

2
ΛiG

−1
i , (21)

where Xi is calculated via the current Gi.
It is widely acknowledged that neural network-based frame-

work is one of the most promising technologies, which has
significantly improved the performance of learning tasks com-
pared with traditional optimization schemes. Intuitively, this
inspires us to directly learn Xi with learnable Λi according
to Equation (21), which maps the updating rules derived from
Lagrangian function to a neural network structure. Differentia-
bility with regard to Lagrangian multiplier methods allows us
to construct block-wise neural networks, so that derivatives can
be obtained by applying a classic back propagation. Following
spirits of learning-based optimization that we have deduced
before, we develop an efficient learning framework for achiev-
ing estimated X̂i, which reaches low-rank solutions and min-
imizes the reconstruction errors simultaneously. Some works
have also considered replacing the variables in optimization
steps with trainable layers to construct a differentiable neural
network, achieving encouraging performance [33], [35], [37].
Considering that Λi is a learnable linear layer Wi without
bias in neural networks, we have

X̂i =
1

2
W

(k)
i G−1

i , (22)

where W
(k)
1 ∈ Rm×d1 , W

(k)
i ∈ Rdi−1×di , i = 2, · · · , I − 1

and W
(k)
I ∈ RdI−1×n are weights updated by back propa-

gation at the k-th iteration. Here G−1
i is the pseudo-inverse
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Fig. 1: Structure of the proposed DLRL with 4 blocks, which is a block-wise differentiable neural network framework. The illustration
contains 5 learnable parameters, including a parameter η shared across all blocks and 4 weight matrices W1,W2,W3,W4 in each block.
The final estimated matrix X̂ is obtained by the multiplications of matrices learned in each block, that is, X̂ = X̂1X̂2X̂3X̂4.

of matrix Gi. Therefore, the neural network-based learning
procedure for minimizing Equation (15) is

Gi =
1

2
(YT

i Yi)
pi−2

2 ,

Ti =
1

2
W

(k)
i G−1

i ,

X̂i =ReLU(Ti).

(23)

Because most matrix factorization-based methods require the
latent submatrices to be non-negative, we adopt the rectified
linear unit function ReLU(·) to ensure the non-negativity of
outputs and maintain features of yielded submatrices. Comput-
ing Equation (23) can be viewed as a three-step differentiable
low-rank learning operator that learns low-rank outputs in each
block. Because the presented forward propagation rules are
derived from Equation (20), they can be regarded as a solution
of the linear equation, where Λi is approximately obtained via
trainable Wi.

To accelerate the convergence speed of networks, we add a
new learnable parameter η ∈ (0, 1) to control the updating rate
of Yi automatically, which is learned via back propagation
during network training. It was inspired by the techniques
of accelerated proximal gradient algorithms [51]. In order to
guarantee that η satisfies 0 < η < 1, we project it onto
the corresponding domain before forward calculation at each
epoch. Therefore, Yi at each block is computed by

Yi = Xi −
1

ηLi
∇f(Xi). (24)

In general, the parameter setup for the proposed method is
Θ = {η,W1, · · · ,WI}. The Lipschitz constant is computed
at each block by [52], [28]

Li = max{‖X1 · · ·Xi−1‖22‖Xi+1 · · ·XI‖22, ε}. (25)

The loss function of the proposed networks is calculated by

J (X, X̂1, · · · , X̂I) =
1

2

∥∥∥∥∥PΩ

(
I∏

i=1

X̂i

)
− PΩ(X)

∥∥∥∥∥
2

F

, (26)

which measures the reconstruction errors. Therefore, DLRL
achieves the low-rank output with differentiable operator in
each block and minimizes the reconstruction errors simulta-
neously. Algorithm 1 illustrates the training process of the
proposed DLRL, where all learnable parameters are updated
according to their gradients. The training process stops when
the loss function J (X, X̂1, · · · , X̂I) converges. Figure 1
illustrates the structure of DLRL with 4 blocks as an example.

C. Back Propagation for DLRL

The gradients of learnable parameters using in back propa-
gation are derived from the loss function (26). For simplicity,
we denote the loss J (X, X̂1, · · · , X̂I) as J in this subsection.
Because gradient computations are the same in each block,
we only derive gradients in a single block as an example.
Accordingly, we write Wi as W, Ti as T, Li as L, Xi as X,
and X̂i as X̂, respectively. With the aforementioned notations,
we derive the gradients of learnable parameters W and η in
the i-th block as follows:

1) Gradient of W: The coordinate-wise partial derivative
of the loss function J w.r.t. W is expressed as

∂J
∂Wcr

=
∑
p,l

∂J
∂Tpl

∂Tpl

∂Wcr
, (27)

where Wcr is the (c, r)-th entry of W. Expanding the partial
derivative ∂Tpl

∂Wcr
leads to

∂Tpl

∂Wcr
=

1

2

∂
∑

s Wps

(
G−1

)
sl

∂Wcr
=

1

2

∂Wpr

(
G−1

)
rl

∂Wcr
, (28)
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Algorithm 1 Differentiable Low-Rank Learning (DLRL)
Input: Data matrix X ∈ Rm×n and indicators of Schatten-p
norm {pi}Ii=1.
Output: The predicted factors X̂i, i = 1, . . . , I .

1: Initialize learnable weight matrices Wi, i = 1, . . . , I and
learnable parameter η;

2: Initialize factors Xi, i = 1, . . . , I and counter k = 0;
3: while J (X, X̂1, · · · , X̂I) does not converge or the frame-

work does not meet the early-stop condition do
4: for i = 1→ I do
5: Obtain Lipschitz constant Li with Equation (25);
6: Calculate input of the differentiable low-rank opera-

tor Yi with Equations (14) and (24);
7: Compute output of the differentiable low-rank oper-

ator with Equation (23);
8: end for
9: Learn trainable weights W

(k)
i , i = 1, . . . , I and updat-

ing rate η(k) with back propagation;
10: Update counter k = k + 1;
11: end while
12: return X̂i, i = 1, . . . , I .

which implies that

∂J
∂Wcr

=
1

2

∑
p,l

∂J
∂Tpl

∂Wpr

(
G−1

)
rl

∂Wcr
, (29)

where gradient ∂Wpr

∂Wcr
= 1 only when p = c, and 0 otherwise.

Therefore, this indicates that

∂J
∂Wcr

=
1

2

∑
l

∂J
∂Tcl

∂Wcr

(
G−1

)
rl

∂Wcr

=
1

2

∑
l

∂J
∂Tcl

(
G−1

)
rl
.

(30)

Transforming to the form of matrix, we have

∂J
∂W

=
1

2

∂J
∂T

(
G−1

)T
, (31)

with
∂J
∂T

=
∂J
∂X̂
∇ReLU(T), (32)

where we can compute the derivative ∂J
∂X̂

= ∇f(X̂) with
Equation (14).

2) Gradient of η: As to the partial derivative of J w.r.t. η,
it is computed by

∂J
∂η

= Tr

[(
∂J
∂Y

)T
∂Y

∂η

]
, (33)

where
∂Y

∂η
=

1

Lη2
∇f(X). (34)

Further, we compute ∂J
∂Y by

∂J
∂Y

=
p− 2

2

∂J
∂G

Y
(
YTY

) p−4
2 . (35)

Given G = G−1, we compute the coordinate-wise ∂J
∂Gcr by

∂J
∂Gcr

=
∑
p,l

∂J
∂Tpl

∂Tpl

∂Gcr
, (36)

where
∂Tpl

∂Gcr
=

1

2

∂
∑

s WpsGsl
∂Gcr

=
1

2

∂WpcGcl
∂Gcr

. (37)

Therefore, considering both Equations (36) and (37), we have

∂J
∂Gcr

=
1

2

∑
p,l

∂J
∂Tpl

∂WpcGcl
∂Gcr

. (38)

Analogously, gradient vanishes when l 6= r, leading to

∂J
∂Gcr

=
1

2

∑
p

∂J
∂Tpr

∂WpcGcr
∂Gcr

=
1

2

∑
p

∂J
∂Tpr

Wpc. (39)

Hence, the matrix form of derivative is

∂J
∂G

=
1

2
WT ∂J

∂T
. (40)

Accordingly, we have

∂J
∂G

= −1

2
WT ∂J

∂T
(G−1)TG−1. (41)

D. Convergence Analysis

The framework of DLRL is comprised of multiple blocks,
where each block deals with the same subproblem. Because
the network structure is developed from the proximal gradient
method and Lagrangian multiplier method, each block is
differentiable with a theoretical guarantee. Thus, the conver-
gence of DLRL is guaranteed by back propagation of neural
networks. It is notable that the convergence of loss values
can not guarantee the convergence of Schatten-p norm values.
Because each block of DLRL is derived from optimization
on subproblems correlated with Schatten-p norm, the block-
wise network can minimize the value of Schatten-p norm by
forward propagation during training iterations. Equation (26) is
applied to make the framework output a matrix that approx-
imates the incomplete matrix at the best, while the forward
propagation minimizes the rank of each yielded submatrix.
Therefore, we need to prove that the convergence of Schatten-
p norm can be guaranteed by the forward calculation of neural
networks. To prove the convergence of Schatten-p norm values
in each block, we first introduce a lemma.

Lemma 1: [29] For any positive definite matrices A,B ∈
Rd×d, the following inequality holds when 0 < pi ≤ 2:

Tr
(
A

pi
2

)
−pi

2
Tr
(
AB

pi−2

2

)
≤ Tr

(
B

pi
2

)
− pi

2
Tr
(
BB

pi−2

2

)
.

(42)

Then we prove the following theorem.
Theorem 1: For any output X̂i, i = 1, · · · , I of the i-th

block in Algorithm 1, ‖X̂i‖pi

Spi
≤ ‖Yi‖pi

Spi
at each iteration.

Proof 1: Because X̂i = 1
2W

(k)
i G−1

i is the solution to
following optimization problem:

arg minYi
Tr(YT

i YiG), s.t. Yi = Xi, (43)
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then we have

Tr(X̂T
i X̂iG) ≤ Tr(YT

i YiG) (44)

in the i-th block. Since Gi = 1
2 (YT

i Yi)
pi−2

2 , this indicates
the inequality that

1

2
Tr
(
X̂T

i X̂i(Y
T
i Yi)

pi−2

2

)
≤ 1

2
Tr
(
YT

i Yi(Y
T
i Yi)

pi−2

2

)
.

(45)
That is to say
pi
2
Tr
(
X̂T

i X̂i(Y
T
i Yi)

pi−2

2

)
≤ pi

2
Tr
(
YT

i Yi(Y
T
i Yi)

pi−2

2

)
(46)

when 0 < pi ≤ 2. Given A = X̂T
i X̂i and B = YT

i Y, and
considering both Equations (42) and (46), we have

Tr
(

(X̂T
i X̂i)

pi
2

)
≤ Tr

(
(YT

i Yi)
pi
2

)
. (47)

Thus ‖X̂i‖pi

Spi
≤ ‖Yi‖pi

Spi
, completing the proof when 0 <

pi ≤ 2.
The proof above provides the convergence guarantee of

local Schatten-p norm value in each block. Because each block
yields factorized matrix with lower Schatten-p norm value,
according to Equation (8), the global values of Schatten-p
norm 1

p‖X‖
p
Sp

can be minimized.

E. Discussions on DLRL

DLRL aims to solve the low-rank optimization problem by
minimizing the MSS function, using differentiable block-wise
neural networks. With previous analyses, DLRL can optimize
Schatten-p norm-based problems with different values of p, as
long as the block number I and indicators of Schatten-p norm
{pi}Ii=1 in each block satisfy the following conditions:

1) 1
p =

∑I
i=1

1
pi

;
2) 0 < pi ≤ 2 for i = 1, · · · , I .
For instance, if we want to approximate p = 1

2 , it is
applicable to fix {pi = 1}Ii=1 with block number I = 2, or
{pi = 3

2}
I
i=1 with block number I = 3. From Algorithm 1, we

can observe that the main time consumption of DLRL is based
on matrix multiplication and matrix inversion. To simplify,
the dimensions of factors are all denoted as d. Therefore,
the time complexity for forward propagation of all blocks
is O((I − 2)d3 + md2 + nd2). Given that d � min(m,n),
the overall time complexity is O((m + n)d2). Because the
dimension d of factors is much smaller than the dimension of
original matrix, the DLRL framework is efficient. Compared
with other rank minimization methods, DLRL avoids SVD
(O(min(m,n)mn)) at every iteration so that further speeds
up the framework, and allows back propagation of the neural
networks.

Finally, we claim that the main differences between DLRL
and the previous optimization on MSS [28] are that:

1) DLRL updates weight matrix Wi for each block instead
of updating Xi directly in MSS optimization;

2) In MSS optimization, parameters are updated by Singular
Value Thresholding (SVT) method, while DLRL updates train-
able weights and parameters with back propagation, according
to a predefined reconstruction loss function;

3) MSS optimization solves the Schatten-p norm minimiza-
tion problem upon singular values of matrix, while DLRL
minimizes the norm values with learning steps based on
matrix multiplication. This significantly accelerates the model
computation as we have analyzed.

IV. EXPERIMENTAL ANALYSES

In this section, we consider low-rank matrix completion
in collaborative filtering and image recovery as concrete ex-
amples to validate the efficiency of the proposed framework.
Substantial experiments are conducted including the compari-
son with other related state-of-the-art methods. The parameter
sensitivity, runtime, as well as convergence are analyzed. The
proposed DLRL is implemented with PyTorch platform and
run on the computer with an I5-7200U CPU and 8G RAM.

A. Dataset Descriptions

For collaborative filtering, we adopt six widely used datasets
that are publicly available. These datasets are collected from
practical applications like movie websites, shopping platforms,
and music recommendation websites. The detailed information
of these datasets is listed as follows:

Movielens1 is a collection of widely used benchmark
datasets for ratings on movies. In experiments, we select
Movielens-100K and Movielens-1M which contain 100 thou-
sand ratings and 1 million ratings, respectively.

Filmtrust2 is a dataset for movie recommendation that was
collected from the well-known Filmtrust website. The dataset
has 35,497 ratings generated by 1,508 users and 2,071 items
from the website.

Netflix3 is a popular online movie and TV website which
contains about 100 million ratings. Limited by computational
resources and time complexity of compared methods, we only
extract part of the data with 1,500 users and 2,000 items.

Amazon Music4 is a famous 5-star music recommendation
database collected from the Amazon website. We generate the
dataset by extracting users who rated at least 30 items and
items that were rated by at least 60 users.

Epinions5 is a product recommendation dataset which
records 5-star ratings of items. In this paper, we select all
ratings produced by the top 4,000 users and 12,000 items.

Statistics of these practical recommendation datasets are
shown in Table I. It can be seen from the table that all of
these datasets are sparse, which brings challenges for matrix
completion. We set 80% observed ratings as the training set
Ω while the others as the testing set Ω̄.

As to image recovery tasks, several images of three channels
are selected, where the size of each image is 300×300×3 and
we will conduct matrix completion on each channel (i.e., red,
green, and blue). We generate incomplete images with random
masks or text masks as shown in Figure 2, and recover the
missing pixel values.

1https://grouplens.org/datasets/movielens/
2https://www.librec.net/datasets.html
3https://www.kaggle.com/netflix-inc/netflix-prize-data
4http://jmcauley.ucsd.edu/data/amazon/
5http://www.trustlet.org/wiki/Epinions dataset
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Datasets Filmtrust Netflix Amazon Music MovieLens-100K MovieLens-1M Epinions

# of users 1,508 1,500 5,249 943 6,040 4,000
# of items 2,071 2,000 4,874 1,682 3,952 12,000

# of ratings 35,497 137,962 53,316 100,000 1,000,201 81,513
Rating scale [0.5, 4.0] [1.0, 5.0] [1.0, 5.0] [1.0, 5.0] [1.0, 5.0] [1.0, 5.0]
Data density 0.01137 0.04599 0.00208 0.06305 0.04190 0.00170

TABLE I: Statistics of the real-world datasets of collaborative filtering used in experiments.

Fig. 2: Images (a) - (f) without/with random or text masks.

B. Performance Evaluation

To evaluate the performance of all compared methods, we
adopt Root Mean Square Error (RMSE) defined by

RMSE =

√√√√ 1

|Ω̄|
∑

(i,j)∈Ω̄

(xij − x̂ij) (48)

to measure the reconstruction error of testing set Ω̄ in rec-
ommender system datasets, where x̂ij and xij are entries in
predicted matrix X̂ and observed matrix X. A lower RMSE
value indicates better performance.

The recovered images are evaluated by the widely employed
Peak Signal-to-Noise Ratio (PSNR), defined as

PSNR = 10log10

(
2552

1
3mn

∑3
t=1 ‖PΩ̄(X̂(t))− PΩ̄(X(t))‖2F

)
,

(49)

where X̂(t) and X(t) are the recovered image matrix and
original image matrix of the t-th channel, respectively. We
evaluate the reconstruction error of unobserved pixels on all
channels. A higher PSNR value corresponds to better quality
of recovered images.

C. Compared Methods and Parameter Settings

To better evaluate the performance of the proposed method,
we select six state-of-the-art methods on low-rank matrix
recovery, including TNNR [15], IRNN [53], GPG [22], MSS
[28], sRGCNN [54], DNNR [55], FNNM [56] and ISVTA
[27]. All of these methods except FNNM and sRGCNN
minimize the rank of the matrix by optimizing Equation
(2), where g(X) is the nonconvex non-smooth rank function.
FNNM is specifically developed to minimize values of nuclear
norm. Most of these methods include SVD computation at
each iteration. Due to the limitation of FNNM and sRGCNN,
we only apply them to collaborative filtering.

Some parameter settings are clarified in advance to achieve
more credible experimental results. All algorithms apply de-
fault settings as original papers. TNNR with Accelerated

Proximal Gradient Line (APGL) search method is selected,
whose parameters are set as ρ = 0.005 and λ = 0.01. In
IRNN, GPG and DNNR, we initialize λ0 = α‖PΩ(X)‖∞,
where α ranges in {1, 100, 200, · · · , 1000}. We select `p-norm
as nonconvex surrogate function for IRNN and GPG, where p
ranges in (0, 1), while for DNNR we follow original paper and
set p = 1

2 or 2
3 . As for MSS, we set η = 0.1 and λ = 200, the

factor number is set as 4 or 5 with pi = 1, i = 1, · · · , I , that
is, p = 1

4 or 1
5 . For modified Schatten-p norm optimization of

ISVTA, we adopt p = 0.1.
As to the proposed DLRL, the dimensions of factors are set

as {di}I−1
i=1 = d. Specifically, we set d = 20 for experiments

on synthetic and recommendation datasets, while d = 80
for image recovery tasks. In following experiments, we set
all pi = 1 to construct different global p values in light of
Equation (8). The learning rate of DLRL is set as 0.01 or
0.005.

D. Experiments on Synthetic Data

First, experiments on synthetic data are conducted to explore
the parameter sensitivity of DLRL. The synthetic matrix Xs ∈
R100×100 used in experiments is generated by Xs = UVT ,
where U ∈ R100×20 and V ∈ R100×20. To evaluate the
ability to recover corrupt matrix, we apply the Gaussian noisy
N (0, σ) to every entry of the matrix, and set nr as the
percentage of unobserved data entries. We use the Relative
Square Root Error (RSRE) defined as RSRE = ‖X̂−Xs‖F

‖Xs‖F to
measure the recovery accuracy, where a lower value of RSRE
indicates better performance. Because the global p value of
DLRL is tightly related to the selection of I and {pi}Ii=1,
we directly evaluate the performance of DLRL with varying
p values. For simplicity, we set pi = 1 for i = 1, · · · , I .
Thus, different block numbers I = {10, 5, 4, 3, 2} correspond
to varying p = { 1

10 ,
1
5 ,

1
4 ,

1
3 ,

1
2}, respectively. Figure 3 records

the performance of compared methods with varying p val-
ues, noise magnitude σ and unobserved data percentage nr.
Because DNNR is only for p = 1

2 and p = 2
3 , we plot

RSRE values across different p values for comparison with
other methods. From Figure 3, we observe that values of
RSRE obtained by all compared methods become slightly
worse with the increase of σ and nr. The proposed DLRL
is more robust to the change of p value when p ≤ 1

2 ,
and generally achieves superior performance compared with
other methods. When p = 1

2 , we have examined DLRL with
{pi = 1}2i=1 (two blocks) and {pi = 3

2}
3
i=1 (three blocks),

finding that the performance is similar and DLRL with three
blocks works better. Here we record the performance of DLRL
with {pi = 3

2}
3
i=1. In summary, it is verified that lower p

Authorized licensed use limited to: Fuzhou University. Downloaded on May 17,2022 at 05:37:47 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3124087, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA 9

𝜎 = 0.4, 𝑛𝑟 = 0.2 𝜎 = 0.4, 𝑛𝑟 = 0.4 𝜎 = 0.5, 𝑛𝑟 = 0.2 𝜎 = 0.5, 𝑛𝑟 = 0.4

Fig. 3: Performance of compared methods (IRNN, GPG, MSS, DNNR, ISVTA and DLRL) on synthetic data with varying p values, noise
magnitude σ and unobserved data percentage nr . For DLRL, we set pi = 1 for i = 1, · · · , I , because of which different global p values
shown in the x-axes can be approximated by varying selections of block number I .

Original Images Incomplete Images DLRLDNNRTNNR

(a)

(b)

(c)

(d)

IRNN GPG MSS ISVTA

Fig. 4: Image recovery results generated by TNNR, IRNN, GPG, MSS, DNNR, ISVTA and DLRL, where the first column lists original
images and the second column lists incomplete images.

values lead to better recovery performance for the proposed
method, and DLRL with p = 1

5 corresponds to favorable
results in most cases. In addition, DLRL with p = 1

10 may
result in performance decline. These observations motivate us
to set p = 1

5 with all pi = 1 in the subsequent experiments.

E. Application to Image Recovery

In this subsection, we consider two types of masks to
generate incomplete images: random masks covering 40%
pixels and text masks, and all methods need to fill the missing
values of the incomplete matrices. Because a color image
contains three channels, we run matrix completion methods
on each channel respectively, and combine all 2-D matrices to
generate final recovery results.

Figure 4 shows recovery results of Images (a) - (d) yielded
by all low-rank matrix recovery methods. From the figure,
we observe that most methods perform well when recovering
incomplete images generated by random masks. However, as
to the recovery of Images (e) - (f) corrupted by text mask
shown in Figures 5 and 6, TNNR, IRNN, and GPG fail to

remove the text completely. It follows from Table II that the
proposed DLRL gains higher PSNR on all test images. Com-
pared with MSS which also applies multi-Schatten-p norm
surrogate function, the proposed DLRL achieves significant
improvement on some tested images.

F. Application to Collaborative Filtering

To further examine the feasibility of the proposed method on
larger datasets, we conduct substantial experiments on datasets
for collaborative filtering. In this subsection, all methods ex-
ecute matrix completion tasks on incomplete user-item rating
matrices of recommender systems. Table III and Figure 7
record the RMSE values and runtimes of all compared algo-
rithms on test datasets, respectively. From the experimental
results, we have the following beneficial observations. The
proposed DLRL performs the best on five of six test datasets
and significantly promotes the performance, which is also
competitive on Netlifx dataset. Although sRGCNN obtains
the best accuracy on Netflix dataset, its computational cost is
drastically high. The experimental results reveal that MSS and
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DLRLDNNRMSS

Incomplete Image GPGTNNR IRNN

ISVTA

Fig. 5: Image recovery results of corrupted Image (e) generated by TNNR, IRNN, GPG, MSS, DNNR, ISVTA and DLRL.

Incomplete Image

DLRLDNNR

IRNN GPG

MSS

TNNR

ISVTA

Fig. 6: Image recovery results of corrupted Image (f) generated by TNNR, IRNN, GPG, MSS, DNNR, ISVTA and DLRL.

Methods/Images a b c d e f

TNNR 25.71 (0.21) 22.67 (0.28) 26.43 (0.21) 25.74 (0.17) 25.48 (0.36) 21.81 (0.41)
IRNN 26.81 (0.23) 23.22 (0.21) 28.80 (0.23) 27.88 (0.22) 27.48 (0.33) 21.81 (0.39)
GPG 27.03 (0.17) 23.06 (0.16) 28.58 (0.24) 28.15 (0.17) 27.09 (0.39) 23.54 (0.44)
MSS 29.66 (0.18) 23.45 (0.21) 28.79 (0.31) 27.84 (0.15) 27.48 (0.30) 21.75 (0.45)

DNNR 28.86 (0.21) 22.64 (0.25) 28.65 (0.26) 28.30 (0.19) 27.70 (0.32) 25.50 (0.46)
ISVTA 29.11 (0.24) 22.84 (0.27) 29.08 (0.24) 28.42 (0.16) 27.31 (0.28) 24.47 (0.33)
DLRL 29.79 (0.16) 23.68 (0.22) 29.57 (0.19) 29.09 (0.20) 28.20 (0.35) 25.87 (0.40)

TABLE II: PSNR values (mean and standard deviation) of all compared methods on image recovery shown in Figures 4 - 6, where the best
performance is highlighted in bold. All experiments are run 10 times and we record the average PSNR values and standard deviations.
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Methods/Datasets Filmtrust Netflix Amazon Music MovieLens-100K MovieLens-1M Epinions

TNNR 1.1617 (0.82%) 1.0134 (0.35%) - (-%) 0.9878 (0.25%) - (-%) - (-%)
IRNN 1.0016 (1.01%) 0.9796 (0.23%) 1.7157 (0.98%) 0.9387 (0.44%) 0.9304 (0.68%) 1.9780 (0.95%)
GPG 1.0194 (1.13%) 0.9452 (0.29%) 1.9862 (1.43%) 0.9489 (0.31%) 0.9341 (0.45%) 1.6669 (0.84%)
MSS 0.8106 (1.08%) 0.9496 (0.38%) 0.9187 (0.86%) 0.9505 (0.28%) 0.8719 (0.33%) 1.1671 (0.71%)

sRGCNN 0.7964 (1.11%) 0.8984 (0.37%) 0.9214 (0.78%) 0.9271 (0.33%) 0.8815 (0.42%) 1.1923 (0.88%)
DNNR 0.9425 (0.94%) 0.9629 (0.26%) 1.6481 (1.21%) 0.9507 (0.41%) 0.9716 (0.49%) 1.7157 (0.92%)
FNNM 1.1948 (1.23%) 0.9697 (0.31%) 1.8845 (1.06%) 0.9935 (0.37%) 0.9691 (0.51%) 1.8324 (0.88%)
ISVTA 1.1095 (0.97%) 1.0111 (0.29%) 1.8157 (1.24%) 0.9846 (0.31%) 0.9349 (0.42%) 1.7649 (0.92%)
DLRL 0.7429 (0.87%) 0.9083 (0.33%) 0.8822 (0.87%) 0.8892 (0.20%) 0.8315 (0.41%) 1.1587 (0.78%)

TABLE III: RMSE values (mean and standard deviation%) of all compared methods on all collaborative filtering datasets, where the best
performance is highlighted in bold. All experiments are run 10 times and we record the average RMSE values and standard deviations.
Limited by computation resources and high time complexity, we only run TNNR on datasets with low dimension.

the proposed DLRL, which are based on multi-factor strategy,
generally gain lower RMSE values on most datasets. On Ama-
zon music and Epinions datasets that are extremely sparse, all
of TNNR, IRNN, GPG, DNNR, FNNM and ISVTA achieve
undesirable performance, revealing that the DLRL framework
behaves favorably on sparse datasets. Namely, DLRL is more
effective in addressing the cold-start issue in recommender
systems. In addition, all methods except MSS and DLRL
require a much higher time consumption. While the runtime of
DLRL is further lower than other methods, due to no SVD at
each iteration. The runtime of MSS is also acceptable because
it only conducts SVD of partial matrices instead of the entire
matrix. Overall, the proposed DLRL improves the performance
of MSS by both time consumption and recovery accuracy. One
most possible reason for the accuracy improvement is that
our algorithm calculates the gradient during back propagation
based on the additionally defined reconstruction loss function,
that is, Equation (26), which makes the model more inclined to
yield an output with lower reconstruction error during training.
Besides, the improvement may also be due to the fact that
optimization target (15) is a strict version of the original
optimization problem (10).

Fig. 7: Runtimes (seconds) comparison for all methods on all test
datasets. Because the time cost for TNNR is unacceptable on Amazon
Music, MovieLens-1M, and Epinions datasets, we plot the runtimes
as 1× 107 seconds in these cases.

For the purpose of investigating the effect of updating rate
η, we examine the performance of DLRL with varying fixed
η values in Figure 8. Table IV demonstrates the performance
of DLRL with learnable η and fixed η = 1. We have some
interesting observations through these experimental results.
First, although the time consumption of DLRL with learnable

η is not the lowest, it achieves superior accuracy on all
test datasets, which is more significant on Filmtrust, Amazon
Music, MovieLens-100K and Epinions datasets. Notice that
we do not want an η which has the lowest runtime, but want
to learn an η which can obtain the best accuracy with relatively
less time consumption. The runtime of DLRL with learnable
η is much less than that with fixed η = 1, which shows
that DLRL with learnable η is effective. Second, according
to Equation (24), a smaller η value should correspond to a
faster updating rate of Yi. However, the experimental results
indicate that the framework with lower fixed η does not always
consume the least time. On the contrary, it requires more time
on some datasets when η decreases to 0.1 or 0.01. This may
be due to the excessively high updating rate which makes the
algorithm fall into a suboptimal solution, and the optimizer
has to consume more epochs to seek better values of trainable
variables. On most datasets, the runtime decreases at first as
the η decreases, and begins to increase after a certain point.
As to the accuracy, RMSE value fluctuates marginally as η
changes. We also test an even lower η < 0.1 on Filmtrust
and Epinions datasets, finding that the runtime and RMSE are
higher than those with fixed η = 0.1. When η drops to 0.01,
the results are even unacceptable on some datasets. It is noted
that DLRL achieves its best performance on both runtime
and RMSE when fixed η = 0.07 on Amazon Music dataset.
Consequently, the selections of η are varied across different
datasets, which indicates that an automatically learned η is
more applicable to DLRL. Third, associated with Table IV, we
can find that the learned η in DLRL which applies trainable
η is basically close to the optimal fixed η that corresponds to
the lowest RMSE in our experiments. The learned η is more
accurate than the optimal fixed η, which validates that the
learnable η is meaningful.

Figure 9 records values of the loss function and Figure
10 shows the sum of Schatten-p norm for all factors during
training on all test collaborative filtering datasets, with varying
learning rates. Because the initial loss values in some datasets
are extremely large, we record the logarithm loss values for
better readability. It can be seen from Figure 9 that loss
function values decrease quickly, which is one of the reasons
that the presented method runs faster than compared methods.
Owing to the fact that we apply the learning rate decay
strategy during training, the curves of loss values may fluctuate
or continue to decline after a period of stable loss values.
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(a) Filmtrust (b) Netflix (c) Amazon Music

(d) MovieLens-100K (e) MovieLens-1M (f) Epinions

Fig. 8: Performance (RMSE values and runtime) of DLRL with various fixed η values. Specially, because the optimal accuracy on Amazon
Music is obtained at η = 0.07, we show the experimental results with fixed η ranging in {0.01, 0.03, 0.05, 0.07, 0.09}.

η Metrics Filmtrust Netflix Amazon Music MovieLens-100K MovieLens-1M Epinions

η = 1.0
Runtime (s) 30.11 52.76 90.21 60.43 713.84 186.43

RMSE 0.8122 (0.891%) 0.9097 (0.31%) 0.9429 (0.79%) 0.8894 (0.23%) 0.8383 (0.46%) 1.1755 (0.77%)

Learnable η
Runtime (s) 7.93 27.18 29.26 20.64 270.53 64.78

RMSE 0.7429 (0.87%) 0.9083 (0.33%) 0.8822 (0.87%) 0.8892 (0.20%) 0.8315 (0.41%) 1.1587 (0.78%)
Learned η 0.1813 0.1270 0.0775 0.5316 0.2364 0.1153

TABLE IV: Performance (runtime and RMSE) of DLRL with fixed η = 1.0 and adaptive learned η values, where the best accuracy is
highlighted in bold.

Meanwhile, as the training going, the Schatten-p norm values
of factors decrease monotonically, which is consistent with
previous theoretical analyses. It can be seen that different
selections of learning rates may lead to varied suboptimal
solutions. These observations point out that the proposed
method succeeds in minimizing the rank of matrices and
reconstruction errors at the same time.

(a) Filmtrust (b) Netflix (c) Amazon Music

(d) MovieLens-100K (e) MovieLens-1M (f) Epinions

Fig. 9: Convergence curves of logarithm loss values with varying
learning rates lr ranging in {0.01, 0.005, 0.001} on all tested collab-
orative filtering datasets.

(a) Filmtrust (b) Netflix (c) Amazon Music

(d) MovieLens-100K (e) MovieLens-1M (f) Epinions

Fig. 10: The sum of Schatten-p norm values for all factors
Xi, i = 1, · · · , 5 with varying learning rates lr ranging in
{0.01, 0.005, 0.001} on all tested collaborative filtering datasets.

V. CONCLUSION

In this paper, we proposed an end-to-end differentiable low-
rank learning framework for learning low-rank optimization
problem with MSS function, which solved nonconvex and
discontinuous rank optimization problem efficiently. The pro-
posed method was applied to low-rank matrix completion
problems and we expanded the optimization target with the
gradient proximal mapping method, which was reformulated
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with the Lagrangian multiplier method and transformed into
a network structure. The proposed framework avoided con-
ducting SVD during iterations and further accelerated the
computation speed. Finally, experimental results verified that
the proposed method succeeded in solving low-rank matrix
completion problems with applications to image recovery and
collaborative filtering, achieving encouraging performance by
both accuracy and computational cost. In the future, we will
further consider the potential effects of solving nondifferen-
tiable low-rank problems with neural network-based methods.
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