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Abstract—Deep multi-view representation learning focuses on
training a unified low-dimensional representation for data with
multiple sources or modalities. With the rapidly growing atten-
tion of graph neural networks, more and more researchers have
introduced various graph models into multi-view learning. Al-
though considerable achievements have been made, most existing
methods usually propagate information in a single view and fuse
multiple information only from the perspective of attributes or re-
lationships. To solve the aforementioned problems, we propose an
efficient model termed Dual Fusion-Propagation Graph Neural
Network (DFP-GNN) and apply it to deep multi-view clustering
tasks. The proposed method is designed with three sub-modules
and has the following merits: a) The proposed view-specific
and cross-view propagation modules can capture the consistency
and complementarity information among multiple views. b) The
designed fusion module performs multi-view information fusion
with the attributes of nodes and the relationships among them
simultaneously. Experiments on popular databases show that
DFP-GNN achieves significant results compared with several
state-of-the-art algorithms.

Index Terms—Deep learning, graph neural network, unsuper-
vised learning, multi-view clustering.

I. INTRODUCTION

LUSTERING analysis is a crucial task in the artificial
intelligence era and has been successfully applied to
numerous domains, including analyses on computer vision [1],
documental texts [2] and social networks [3]. Most classical
clustering methods are designed to deal with single attribute
data that it is difficult to capture the characteristics of targets
sufficiently. With the rapid growth of multimedia technology,
real-world objects are represented in multiple manners, such
as texts, images and voices. Taking object detection as an
example, an object instance can be photoed from various
rotation angles, thereby generating the multi-view data that
depict the target with multiple descriptions [4]. Compared
with single-view form, multi-view data can be utilized to train
a more comprehensive representation and achieve desirable
results for downstream tasks. Thus, it is highly expected to
use multiple information to refine the clustering results.
Multi-view clustering algorithms aim to capture the consis-
tency and complementarity among different views and employ
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them to group samples in an unsupervised way. Recently,
numerous approaches have been proposed and can be roughly
divided into graph-based approaches [5], [6], [7], subspace
learning [8], [9], [10], matrix factorization [11], [12], [13],
and deep neural networks [14], [15], [16]. Specifically, graph-
based methods first build the relationship among nodes and
then use spectral clustering to obtain the cluster assignments.
The goal of subspace methods is to reconstruct the original
indistinguishable space into an ideal subspace. In addition,
considerable researchers pointed out that matrix factorization
technology helps reduce redundant features and keep the most
important attributes. Finally, deep model-based methods are
usually used to learn a low-dimensional embedding. The core
idea of these algorithms is to extract multiple information from
different sources to learn a unified representation and they
have been successfully applied in several domains. However,
they usually either utilize the relationships among nodes or
attributes of samples in the learning process. Consequently,
these two important characteristics may not be made full use
to refine the results of clustering simultaneously.

Graph Neural Network (GNN) has been proposed to deal
with non-Euclidean data and has shown significant efficiency
and powerful learning capability on various machine learning
tasks [17], [18], [19], [20], [21]. As the most critical charac-
teristic of GNN, message passing mechanism can aggregate
information of neighborhoods through their relationships to
learn a meaningful representation for each node. As a result,
the learned node embedding captures the content informa-
tion of samples and keeps the topological structure among
nodes. Therefore, several works introduce GNN for multi-
view learning to solve the aforementioned problem [22], [23],
[24]. Although these GNN-based algorithms have achieved
significant performance on many multi-view learning tasks,
most of them suffer from the following limitations. In the
perspective of message passing, on the one hand, they usually
only conduct information propagation in view-specific input,
but not in the fused representation obtained from all views
[25], [26]. Therefore, the learned unified embedding may
not sufficiently capture the consistency among heterogeneous
views. On the other hand, in the perspective of information
fusion, they either conduct fusion progress from the feature
matrix level or the adjacency matrix level [27], [28]. Thus, it
is difficult to adaptively fuse the content information and topo-
logical structure for representation learning simultaneously.

To tackle the discussed problems, we propose a graph
convolution-based unsupervised learning framework termed
Dual Fusion-Propagation Graph Neural Network (DFP-GNN)
for multi-view clustering tasks. The overview of the pro-
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Fig. 1.

The overview of the proposed DFP-GNN framework. Given a dataset with multiple sources, several view-specific graph convolution networks are

used to generate a hidden representation for each view in the preliminary module. Based on these hidden features, an adaptive fusion mechanism is utilized
for both attribute-level and structure-level fusion. Then, the fused matrices are exploited as the input of the shared module to apply information propagation
across multifarious views. Finally, the whole framework is optimized by a combined objective.

posed method is shown in Fig. 1. Specifically, DFP-GNN
contains three submodules, including the preliminary mod-
ule, the fusion module, and the shared module, to capture
the consistency and complementarity among multiple views.
The preliminary part contains multiple encoders that each
encoder is implemented by a multi-layer graph convolution
network and employed to produce an initial embedding for
each view. Then, the fusion module introduces an adaptive
learning method to fuse the generated initial representations
and topological relationships obtained from different views.
Finally, the shared module is designed to learn a shared hidden
representation by optimizing a combined loss. The training
process of DFP-GNN can be divided into two stages: a)
The proposed three submodules are trained separately where
the output of a former module is used as the input of the
next module, in the pretraining stage. b) In the finetuning
stage, the whole DFP-GNN framework is optimized under the
aforementioned combined objective.

To be specific, comprehensive experiments are designed to
prove the effectiveness of DFP-GNN. The contributions of our
work could be summed up as follows:

« We propose an efficient learning framework named Dual
Fusion-Propagation Graph Neural Network (DFP-GNN)
and apply it to multi-view clustering tasks.

o The dual fusion module and dual information propagation
mechanism are designed to capture the multiple informa-
tion among different views.

o Experimental results show that DFP-GNN achieves sig-
nificant improvements against existing multi-view learn-
ing algorithms on ten benchmark databases.

The rest of this paper is organized as follows. In Section II,
we introduce the related literature, including multi-view clus-
tering algorithms and graph neural networks. The framework
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and training process of our method are presented in Section
II. In Section IV, we evaluate and analyze the effectiveness
of DFP-GNN on a variety of benchmark datasets. Finally,
conclusions and possible directions are drawn in Section V.

II. RELATED WORK

We first introduce several multi-view clustering methods
based on traditional machine learning and deep learning.
Furthermore, various graph neural networks used for single-
view and multi-view representation learning are introduced.

A. Multi-view clustering

Different from single-view clustering, multi-view methods
are designed to capture multiple information among different
views and obtain better cluster assignments [29], [30], [31],
[32]. Xia et al. [33] designed a spectral clustering method
to construct a shared matrix for the Markov chain to solve
the possible noises appearing in multi-view data. To release
the requirement of parameters, an auto-weighted multiple
graph learning framework was designed under the assumption
that there exist consistency and complementarity information
among multiple views [30]. To learn from data with large-scale
samples, Zhang et al. [13] encoded the multiple input raws
into a shared binary latent representation and then utilized a
binary matrix factorization to generate the cluster assignments.
In addition, Wang et al. [5] proposed a graph-based algorithm
to adaptively balance the importance among different views
by fusing all graph matrices into a unified matrix to obtain
the cluster assignments. To efficiently capture complementary
information, Tang et al. [34] proposed obtaining cluster assign-
ments based on a joint affinity graph. For incomplete multi-
view learning, Liu et al. [35] designed a late fusion strategy
to solve the high computational complexity problem.
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In recent years, more and more researchers have introduced
deep neural networks to multi-view clustering by learning a
shared low-dimensional representation. As a nonlinear exten-
sion of canonical correlation analysis, the deep version was
designed to capture the nonlinear relationship between two
input raws to learn highly linearly correlated features [36]. To
embed the multiple information into a shared intact represen-
tation for multi-view clustering, Zhang et al. [14] proposed
a deep learning model named autoencoder in autoencoder
networks by joint optimizing view-specific feature learning
and multi-view information encoding. Furthermore, Huang et
al. [15] designed a deep learning version of multi-view spectral
clustering with a novel objective function to capture the view-
specific local invariance and consistency among various views.
Xie et al. [31] incorporated feature learning, view fusion and
clustering into a unified framework for multi-view clustering.
For incomplete multi-view learning, Lin et al. [37] designed a
novel optimization object to learn a consistent embedding from
multiple views and recover the missing views simultaneously.
To reduce the impact of incomplete view, Yang et al. [38]
proposed a unified model with a contrast learning paradigm by
utilizing available nodes as positive samples and several cross-
view patterns as the negative part. Besides, Peng et al. [39]
projected the input multi-view data onto an embedding space
where the constructed graph was used to generate the final
clustering results. Different from [39], the proposed DFP-GNN
framework uses the adjacency graph to perform information
propagation instead of generating cluster assignments.

The difference between the DFP-GNN and the aforemen-
tioned methods is that our method has the ability to capture the
topological structure of the graph and attributes of samples in
the training process. Consequently, the learned embedding can
be more discriminative rather than those learned by traditional
clustering approaches.

B. Graph neural networks

Aa a non-Euclidean extension of traditional deep learning
paradigms (e.g., convolution and pooling), various GNNs have
been designed to deal with different learning tasks based on
graph or manifold data [40], [41], [42].

In single-view clustering, for example, Wang et al. [43]
transferred the face clustering problem as a link prediction task
and then applied graph convolution network (GCN) to predict
the probability of linkage between two samples, where there
exists an edge if they belong to the same cluster. To mutually
benefit from both graph embedding learning and clustering
processing, a deep attentional embedded learning framework
optimized in a self-training manner was proposed for graph
clustering [44]. Furthermore, Bianchi et al. [45] combined
spectral clustering with GNNs to release the requirement of
spectral decomposition and extend for unseen samples by
formulating a continuous relaxation.

Similarly, several works introduce graph learning models for
multi-view learning tasks. In the task of urban region embed-
ding, Zhang et al. [23] designed a graph attention mechanism-
based joint training framework to learn informative region
embeddings from urban data to assist urban planning. Cheng
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et al. [25] introduced a novel learning method for multi-
view attribute graph clustering based on graph convolution
operation. This work first utilized multiple graph attention
networks for each view to learn an embedding feature and
then designed consistent embedding encoders to find a shared
clustering embedding. To improve the capacity of capturing
multiple information, a graph autoencoder clustering frame-
work was designed to learn feature representations by utilizing
the most informative graph structure and node attributes to
reconstruct all input views [27]. Furthermore, Li et al. [46]
combined graph convolution network and co-training into a
unified framework. In this method, the spectral information
across different input views can be adaptively learned with
the combined Laplacians.

Although the aforementioned GNN-based algorithms have
achieved comparable performance on various multi-source
data analysis tasks, there exist two differences between our
method and them. On the one hand, most of them only
propagate information in view-specific input raws. In con-
trast, DFP-GNN applies message passing on both all view-
specific features and the cross-view representation. On the
other hand, these approaches usually only employ the node
contents among different views to fuse the multiple informa-
tion. However, our method is able to sufficiently utilize multi-
view information with an adaptively dual fusion module based
on both node relationships and attributes.

III. PROPOSED METHODOLOGY

We introduce the detail of the proposed dual fusion-
propagation graph neural network in this section. DFP-GNN
contains three submodules: the preliminary module used for
view-specific information propagation, the fusion module im-
plemented by a dual-fusion mechanism and the shared module
applying cross-view message passing on the fused inputs.
The learning process of DFP-GNN consists of two stages: a)
Module-wise pretraining. b) Finetuning the whole framework.
Finally, the complexity analysis of DFP-GNN is demonstrated.

A. Multi-view clustering meets GNN

The goal of this work is to capture the consistency and
complementarity information among multiple input data X =
{X®X® ... XV} to improve the performance of clus-
tering. Here, X® ¢ Rrxdv 4y = 1,2,-.. |V represents the
original features of the v-th view, n denotes the number of
samples, V' is the number of multiple views and d,, stands for
the dimension of the v-th input feature space.

Besides, the message passing mechanism of GNN needs
an adjacent graph to apply information propagation. How-
ever, existing multi-view datasets usually only provide the
multiple input feature matrices and lack the relationships
among samples. In order to introduce GNN for common multi-
view clustering, it is necessary to simulate the real-world
relationships between samples. To achieve this goal, a graph
construction method is utilized to simulate adjacent graph
G = (V,£®) for each input view X(*) with V and £®)
being the node set and edge set of the v-th view, respectively.
In detail, we utilize an unsupervised method to build the initial
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graph G(*) by using Euclidean distance to find the nearest
neighbors of each node to generate edge set £(*). Then, two
pruning strategies are used to improve the quality of the graph.
Based on the built graph G, the adjacency matrix A € R™*"
can be generated under the rule A;; = e;;, where ¢;; = 1
denotes that there exists an edge between v; and v; in G. Then,
a renormalization trick form is utilized to alleviate the gradient
vanishing/exploding problem occurred in the deep network.
Accordingly, the refined form of A can be formulated as:

A=D:AD 2, (1)

where A = A + I, € R™ ™ is the self-connection variant of
A, I, € R"™" denotes the identity matrix with n dimensions
and D;; = > ; Aij € R™*™ igs the degree matrix derived from
the self-connection matrix A. Thus, the final transition matrix

A can be calculated in the preprocessing stage.

B. Framework of DFP-GNN

The proposed DFP-GNN consists of three submodules:
preliminary view-specific propagation module, dual fusion
module and shared cross-view propagation module. In general,
the preliminary module maps multi-view input features X(*)
with the simulated relationships into a low-dimensional initial
embedding H("). Then, all learned initial representations and
built relationships are fused simultaneously to generate the
unified forms H and U in the fusion module. Finally, both the
fused matrices are used as the inputs of the shared module and
the whole framework is optimized under a combined objective.

Preliminary Module. Existing multi-view datasets are often
represented from preprocessed features, which usually have a
redundant feature space and are impacted by possible noisy
samples. If the fusion process is carried out in this feature
space, the learning algorithm can be affected by these re-
dundant features, thereby failing to focus on capturing the
complementarity among multiple views. Furthermore, multiple
views usually have different input dimensions, which leads to
difficulty in optimizing the downstream module. To solve these
issues, we utilize a multi-layer graph convolution network for
each input view to learn a low-dimensional and discriminative
latent embedding space.

In this work, we denote the view-specific propagation net-
work of the v-th view as f,gﬁ% (X, A); 9), where O) =
{W(”’”,b(”’l)}lL:1 and L are the learnable parameters and
number of layers of the view-specific network, respectively.
In detail, A () is the transition matrix of the v-th view and
can be obtained according to Eq. (1). Then, the computation
of the [-th layer of fé}’,% is formulated as follows:

HD — U(A(v)H(v,l—l)W(le) + b(v,l)). )

Here, W1 ¢ Rwi-n*dwn and b e Réw.n represent
the weights and bias of the [-th layer, respectively. Then,
H®:0 = X®) ig the initial input, H®Y) e R"%de.n denotes
the output of the I-th layer, and H(*) = H®L) represents
the final output. Besides, o denotes the non-linear activation
function and is used for the first L — 1 layers. As a result, the
learned initial latent representations have the same dimension
and keep the local context in the feature space.
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Fusion Module. Fusing multiple information to capture
the consistency and complementarity among various views is
crucial for multi-view learning tasks. For those methods based
on graph neural models, one can implement the fusion process
through the node attributes or the topological structure. To our
knowledge, only a few works carry out the fusion process from
both attribute and structure information.

Therefore, we propose a dual fusion mechanism to adap-
tively fuse multiple node attribute information and multiple
graph structure information simultaneously. Based on the
learned view-specific latent embeddings, the fusion of feature-
level can be formulated as:

\%
H= Z a,H®). (3)
v=1

Here, o, is a learnable variable employed to adjust the
importance of v-th preliminary embedding automatically and
is initialized as o, = 1/V. Furthermore, «,, is normalized as:

et
- “)
D1 €%

i=1
Similarly, the structure-level fusion can be computed to gen-
erate a unified transition matrix:

Qg =

v
U=3 5,A", (5)
v=1
where 3, is a learnable weight for the v-th propagation matrix
and is also normalized in a way similar to «,,. Benefiting from
the dual fusion mechanism, the proposed method can flexibly
fuse multiple information from all input views.

Shared Module. We further design a graph convolution-
based shared module, which utilizes the fused representation
and transition matrix as inputs, to train a comprehensive
and compact embedding based on the cross-view propagation
mechanism. The main architecture of the shared module
is implemented by a stacked graph autoencoder (SGAE).
Furthermore, a dot product decoder and a clustering layer
are introduced to improve the robustness of DFP-GNN. The
detailed information of the shared module is demonstrated in
the following.

To be simplicity, the stacked graph autoencoder used in
the shared module is denoted as f,,,,(H, U;), where Q =
{W(m),b(m)}f:1 and M are the network parameters and
the number of layers, respectively. On the one hand, the first
% layers are implemented by graph convolution encoders and
the computation of the i-th encoder is

70 = & (Uz(i—l)w(i) =+ b(i)) ,
i:1727"' 7%7

(6)

where W () and b(?) represent the learnable weights and bias,
respectively. Z(°) = H is the initial input of encoder part
and Z = Z(%) is the final latent embeding. On the other
hand, the last % layers decode the learned representation Z
to reconstruct the initial input H and the output of the j-th
layer can be computed as:

VAL (z(f‘”w(j) I b(j)) ,

u (7N
j=Y 41, M
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Here, Z\” = Z(¥) is the input of decoder part and H = Z(M)

is the reconstruction form of H. Besides, W) and b(¥) are
the network parameters and will be updated during the training
process. Instead of using graph convolution, the decoder is
implemented by a multi-layer perceptron to avoid the over-
smoothing problem occurred in deep GCN models [47], [48].
Hence, the intrinsic information among different views would
be captured by minimizing the difference between H and H
and more details will be introduced in the next subsection.
To alleviate the distortion degree of input space caused by
deep network training, we introduce a dot product decoder to
predict the relationships among samples in the learned space.
In detail, we utilize the hidden embedding Z derived from Eq.
(6) to reconstruct the graph by calculating the edge prediction
probability. The computation is formulated as follows:

p(U | Z):HHp(ﬁij | Zi,Z;) , (®)

i=1j=1

where p (Uy; = 1| Z;,Z;) = 0 (2;Z]) represents the prob-
ability that there is an edge between two nodes and o is
implemented by a sigmoid function.

Furthermore, existing multi-view clustering algorithms usu-
ally first learn an embedding and apply k-means to obtain
the final cluster assignments. However, such two-stage learn-
ing fails to make use of the clustering process to refine
the proposed algorithm. Therefore, we introduce a clustering
layer into the shared module in an unsupervised self-training
manner. Specifically, the Student’s ¢-distribution is adopted to
generate soft assignments Q for all nodes based on the learned
embedding Z. Formally, the element g;; of Q is computed as:

_ o+l
2

" (1112 = 1 /) - o

S (V12— g2 /)T

2
where v represents the degrees of freedom of the Student’s
t-distribution with {z; }?:1 being the cluster centroids initial-
ized in the pretraining stage and learned during the finetuning
stage. Accordingly, ¢;; denotes the similarity between Z; and
5 and can be regarded as the label probability about assigning
node v; into cluster j. Then, a target distribution P is derived
from Q and then used as supervised information to guide the
training process. The computation of p;; is shown as follows:

i = 4/ 1
N Zj’ q'L'Qj//.fj/ ’

where f; = . ¢q;; is soft cluster frequency and employed to
release the distortion appearing in the latent space. Finally, the
clustering assignment ¢; of node v; can be formulated as:

(1)

(10)

C; = arg mjax ij-

Benefiting from the clustering layer, the proposed framework
has the ability to learn a separate latent embedding space
under the guidance of the clustering process. Furthermore, the
highly confident pseudo-labels generated in the self-training
process would make graph convolution more efficient in a self-
supervised learning manner.
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Overall, the proposed DFP-GNN can capture the consis-
tency and complementarity among different views due to the
view-specific propagation in the preliminary module, dual
fusion mechanism in the fusion module and cross-view prop-
agation in the shared module.

C. Training of DFP-GNN

In the pretraining stage, each view-specific network of the
preliminary module is trained individually and then the fused
matrices will be adopted to pretrain the share module. Finally,
the pretrained weights of DFP-GNN will be finetuned by
optimizing the proposed combined loss.

Pretraining Stage. In the preliminary module, specifically,
each view-specific network will be extended to an autoencoder
form to learn a low-dimensional embedding H*) in an unsu-
pervised learning manner. The optimization objective contains
two parts: a) Optimizing a mean square error between input
feature X (*) and the reconstruction form X(U). b) Optimizing a
structure preservation loss between the predicted relationships
X(v) and the target information AW,

Then, all learned initial embeddings { H® }Z:l are fused to
form a unified feature matrix H for the next module according
to H= 4>, H() and all constructed transition matrices
A(”), v=1,---,V are used to form a fused transition matrix
by computing U = % Yo A® Ttis worth noting that a graph
will be constructed from the fused feature H and a refined
adjacency matrix U with a self-connection is then generated
from the graph. In detail, U is employed as the supervised
information to guide both the pretraining of the shared module
and the finetuning of the whole framework.

The pretraining process of the shared module is optimized
with two objectives. The first one is minimizing a mean square
error between the fused representation H and the reconstructed
feature H derived from the shared module. The last one is the
optimization of structure preservation loss between U and the
predicted relationships U, which is computed by Eq. (8). After
sufficient module-wise pretraining, the learned parameters are
copied to the corresponding parts of DFP-GNN.

Finetuning Stage. The whole framework is trained to
finetune the pretrained parameters under the optimization of
a combined objective, which contains reconstruction loss,
structure preservation loss and clustering loss. In detail, the
reconstruction loss is implemented by a mean square error to
optimize the difference between H and H. The optimization
objective of reconstruction loss is formulated as follows:

— 1 =2
L.(H,H) = ndr [H-H]|,, (12)
where dj denotes the dimension of the fused embedding.
Accordingly, the final intact representation Z of all views can
be learned by optimizing (12).

Inspired by link prediction tasks, we propose a structure
preservation loss for the dot product decoder by minimizing a
binary cross-entropy and the computation is shown as follows:

ﬁs = —% ZZ |:ij 10gﬁij + (1 - fjw)log (1 _ﬁij):| y
i=1 j=1
13)
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Algorithm 1 Dual Fusion-Propagation Graph Neural Network

(DFP-GNN) for Multi-View Clustering

Input: Input features X' = {X(i),~~ ,X(V)}, number of
views V', maximum epoch K, update interval 7.

Output: Cluster assignments C = {C;};__,.

1: Stage 1: Preprocessing

2 G={GW,... .G} = GRAPHCONSTRUCTION(X)

3: Obtain A = {AD .. AV} based on G

4: Stage 2: Pretraining

5. for v € {0,1,--- ,V} do

6: for epoch € {1,2,--- | K} do

7 H® X" A" = SGAE®) (X, A())
) 9 pm )

8: loss = ET(X(”),XM) + L, (A(”),K(U))

9: end for

10: end for

—_—
—_

. Set H = {H(l))... ,H(V>}

12: H, U = FUSIONMODULE(#, A)

13: for epoch € {1,2,--- , K} do

14: H,U = SGAE,,,(H, U)

15: loss = £,.(H,H) 4+ L,(U,T)

16: end for

17: Stage 3: Finetuning

18: Initialize DFP-GNN with the pretrained weights.
19: for epoch € {1,2,--- , K} do

20: H,U,Q = DFP-GNN(X, A)

21: Optimize the combined objective L.
22: if epoch/T = 0 then

23: Update P based on Q

24: end if

25: end for

26: Obtain cluster assignments C
27: return C

where U is derived from the fused embedding in the pre-
training stage with U being the predicted relationships. By
optimizing (13), the learned space retains the topological
structure in the input space and can release the over-smoothing
problem appearing in multi-layer graph convolution networks.

We introduce a self-training clustering objective for the
clustering layer to incorporate the assignment process into
embedding learning. Formally, the optimization of clustering
loss is computed as follows:

L.(P,Q) =KLP|Q) =Y pylog?s  (14)
i g

quv
where K L(- | -) is Kullback-Leibler divergence between two

distributions. Finally, the combined optimization objective is
reformulated as follows:

Crsc = ﬁr + /\1['5 + )\2['0 (15)

Here Ay > 0 and XAy > 0 is the coefficients of £, and
L., respectively. Finally, the parameters of DFP-GNN can be
updated during the back-propagation process. Although DFP-
GNN is designed for clustering tasks, it is possible to extend
our method to classification tasks. Furthermore, the procedure
of DFP-GNN is summarized in Algorithm 1.
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D. Complexity of DFP-GNN

We analyze the computational complexity of DFP-GNN
in the finetuning stage. Specifically, the forward propagation
process contains three parts: view-specific propagation, dual
fusion process and cross-view propagation. The total compu-
tation cost of the preliminary module is O(V Lndy(n + dy)),
where dj, denotes the dimension of the preliminary module.
Then, the fusion module is mainly based on matrix addition
and its complexity is O(Vndp,). Finally, the complexity of
cross-view propagation is O(Mnd,(n + d,)), where d, rep-
resents the dimension of embedding in the shared module. As
a result, the total computational complexity of DFP-GNN is
summed as O(V Lndp(n + dp) + Mnd,(n + d.)). Suppose
the optimizations stop after ¢ iterations, the final computational
complexity can be simplified as O(tndV (n + d)), since the
values of L and M are usually set as two or three and d
represents the dimensions of features.

IV. EXPERIMENTS

In this section, the superiority of DFP-GNN is verified
with eleven clustering algorithms on multiple available real-
world benchmark datasets. We first describe the experimental
implementation in detail. Then, the clustering results of all
compared methods are shown to demonstrate the performance
of DFP-GNN. Finally, comprehensive additional experiments
are conducted to verify the sensitivity of different hyperpa-
rameters or components.

A. Experiment setup

Datasets. Several famous benchmark datasets with multiple
sources are adopted in our experiments.

o BBCSport is a document dataset with 544 samples and
five topical areas. Two different kinds of views with
3,183-D and 3,203-D are adopted.

« Caltech101 is an image dataset with six types of features:
48-D Gabor, 40-D wavelet moment (WM), 254-D CEN-
TRIST, 1,984-D histogram of oriented gradient (HOG),
512-D GIST and 928-D local binary pattern (LBP).

o Cifar-10K: CIFAR consists of 60,000 images with ten
classes and the first 10,000 samples are used. Six kinds
of views are extracted: 768-D color histogram (CH), 512-
D GIST and 324-D HOG.

« Citeseer is a scientific document benchmark dataset with
3,312 samples. It consists of two kinds of features: 3,703-
D content feature and 3,312-D citation feature.

e« GRAZO02 is an object categorization dataset with high
complexity and intra-class variability. Six visual views are
adopted: 512-D SIFT, 32-D SUREF, 256-D GIST, 500-D
LBP, 500-D PHOG, and 680-D wavelet texture (WT).

e MNIST-10K contains 10,000 handwritten digit images
with three types of visual features: 30-D IsoProjection,
9-D linear discriminant analysis, and 30-D neighborhood
preserving embedding.

« MSRCv1 is an object image dataset with five visual
feature sources: 24-D color moment (CM), 576-D HOG,
512-D GIST, 256-D LBP, and 256-D CENTRIST.
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TABLE I
A BRIEF DESCRIPTION OF THE TESTED DATASETS

Datasets || # Samples | # Views | # Distribution of dimensions | # Classes
BBCSport 544 2 3,183 3,203 - - - - 5
Caltech101 9,144 6 48 40 254 1,984 512 928 101
Cifar-10K 10,000 3 768 512 324 - - - 10

Citeseer 3,312 2 3,703 3,312 - - - - 6
GRAZ02 1,476 6 512 32 256 500 500 680 4

MNIST-10K 10,000 3 30 9 30 - - - 10

MSRCv1 210 5 24 576 512 256 254 - 7

NUS-WIDE 2,400 6 64 144 73 128 225 500 12
Out-Scene 2,688 4 512 432 256 48 - - 8
Youtube 2,000 6 2,000 1,024 64 512 64 647 10

o NUS-WIDE is an object recognition dataset with six
available features: 64-D CH, 144-D color correlogram,
73-D edge direction histogram, 225-D block-wise color
moment, 128-D WT and 500-D SIFT.

e Out-Scene has 2,688 images with eight groups and four
different kinds of features are extracted: 512-D GIST,
432-D CM, 256-D HOG, and 48-D LBP.

¢ Youtube is a video database with six views: 2,000-D
cuboids histogram, 1,024-D hist motion estimate, 64-D
HOG, 512-D MFCC, 64-D volume stream and 647-D
spectrogram stream features.

A summary of dataset statistic information, including the
number of samples, number of clusters, distribution of dimen-
sions and so on, is shown in Table I.

Evaluation Metrics. Although the proposed method is used
for clustering, we assume that the true class label infor-
mation is available during the evaluation stage. Specifically,
six mainstream evaluation metrics and protocols, including
clustering Accuracy (ACC), Normalized Mutual Information
(NMI), Purity, Adjusted Rand Index (ARI), Precision and F-
score are adopted. The values of all metrics lie in [0, 1] except
for ARI, which is ranged in [-1, 1]. The higher values they
are, the better performance they achieve.

Compared Methods. We verify the efficiency of DFP-GNN
with several multi-view clustering methods in our experiments.

o k-means [49]: Multi-view data are stacked into a high-
dimensional single form and then grouped by k-means to
provide a benchmark for single-view clustering.

o RMSC [33]: Robust multi-view spectral clustering guides
multi-view clustering by constructing a shared probability
transition matrix with low-rank constraints.

o AMGL [30]: The auto-weighted multiple graph learning
method trains the weights of views adaptively and calcu-
lates the embedding matrix in the subspace.

e« SWMC [50]: It constructs a Laplacian rank constrained
graph model to build a private graph for each view with
a shared nearest graph similarity matrix.

e MVGL [51]: Graph learning for multi-view clustering
constrains the rank of the global graph to ensure that the
clustering results are obtained directly.

o AE2-Nets [14]: Autoencoder in autoencoder networks
combines two autoencoders networks (autoencoders net-
works and degradation networks) into their framework to
integrate a complete potential representation.
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o MSC-IAS [52]: It adopts the Hilbert—Schmidt Indepen-
dence to learn a latent embedding space by encoding
complementary information.

e MCGC [53]: It learns a consensus graph by optimizing
the imparity among different input views and constraining
the rank of the Laplacian matrix.

« BMVC [13]: Binary multi-view clustering proposes a
joint learning framework that addresses compact col-
laborative discrete representation and binary clustering
structure learning simultaneously.

o« LMVSC [10]: Large-scale multi-view subspace cluster-
ing algorithm obtains clustering results by integrating
different anchor points graph into the latent subspace.

¢ GMC [5]: Graph-based multi-view clustering promotes
mutual enhancement between the single view graph and
learned unified view graph in a self-weighted way.

Implementation Details. For all compared approaches,
most hyperparameters are set according to the statements in
the original papers. Furthermore, we adjust the corresponding
hyperparameters of BMVC, MSC-IAS, MCGC and LMVSC
to achieve the best results.

For the proposed method, we set the number of common
neighborhoods as 7 = 2 when constructing an adjacent graph
for each view. For all data sources, each row data (an input
data point) is normalized to be |\§<Z||§ ~ 1, where X; is
the normalized form of x;. The dimensions of each view-
specific propagation encoder are set constant to d,-512-2,048-
256 for all benchmark datasets. For the shared module, the
dimensional distribution of the stacked graph autoencoder is
256-64-16-64-256. In the module-wise pretraining stage, the
learning rate is set to 107° and the coefficient of structure
preservation loss is set as 0.001 constant. The pretraining pro-
cesses of view-specific encoders and cross-view propagation
network would be stopped when more than 100 epochs do
not reduce the loss value compared to the current minimum
value. In the finetuning stage, the learning rate and weight
decay of the optimizer are set as 10~° and 107, respectively.
The update interval T' is set as 50 and the training process
would be stopped when the cluster assignment rate is less
than 10~°. The values of A; and )\, are varied over different
datasets. The whole framework is optimized by RMSprop with
a momentum value of 0.9. The maximum number of epochs
is set as K = 20,000. We repeat each experiment of all
methods five times and use the mean values as the results.
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TABLE II
MULTI-VIEW CLUSTERING PERFORMANCES OF ALL COMPARED METHODS
THE BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED IN BOLD AND UNDERLINED, RESPECTIVELY

Datasets \ Methods H k-means RMSC AMGL SwMC MVGL AE?-Nets MSC-IAS MCGC BMVC LMVSC GMC DFP-GNN
ACC 0.4926 0.4434 03379  0.3621  0.3989 0.2982 0.8860 0.4099  0.4099 0.3474 0.8070 0.9449
NMI 0.2519 0.1637  0.0148  0.0155  0.0623 0.0178 0.7129 0.0781 0.0816 0.1154 0.7226 0.8521
Purity 0.5404 0.5077 03621  0.3658  0.4026 0.3790 0.8860 0.4154  0.4099 0.5165 0.8438 0.9522
BBCSport ARI 0.1733 0.1052  0.0011  0.0015  0.0209 0.0050 0.7170 0.0323  0.0627 0.0372 0.7218 0.8593
Precision 0.3274 03124  0.2381  0.2391  0.2468 0.2481 0.7901 02513 0.2732 0.3979 0.7271 0.8956
F-score 0.4360 0.3318  0.3354  0.3839  0.3902 0.2712 0.7840 0.3958  0.3456 0.3148 0.7943 0.8974
ACC 0.1370 0.1352  0.2040  0.2278  0.1293 0.1928 0.2175 0.2745  0.1995 0.1153 0.1950 0.3187
NMI 0.3040 0.3064  0.3823  0.2235  0.1207 0.3779 0.4285 0.3335  0.3936 0.2503 0.2379 0.4239
Purity 0.2914 02975 03978  0.3077  0.1960 0.3544 0.4345 0.3918  0.3748 0.1903 0.3012 0.3643
Caltech101 ARI 0.0835 0.1000  0.0654  0.0058  0.0096 0.1464 0.1249 0.0148  0.1807 0.0275 0.0042 0.3367
Precision 0.1456 0.2058  0.0723  0.0253  0.0235 0.2593 0.1990 0.0359  0.3175 0.0647 0.0261 0.2828
F-score 0.1014 0.1141  0.1030  0.0481  0.0452 0.1771 0.1426 0.0652  0.1949 0.0578 0.0496 0.3189
ACC 0.1832 02315 0.1819  0.1055  0.1005 0.1346 0.2155 0.2673  0.2804 0.1727 0.2025 0.3160
NMI 0.0548 0.1174  0.0698  0.0032  0.0041 0.0162 0.1142 0.1342  0.1576 0.0516 0.1141 0.2302
Purity 0.1930 02458  0.1832  0.1062  0.1071 0.2038 0.2176 0.2680  0.2835 0.3492 0.2032 0.3827
Cifar-10K ARI 0.0324 0.0689  0.0238  0.0000  0.0000 0.0068 0.0725 0.0403  0.1112 0.0257 0.0689 0.1442
Precision 0.1232 0.1554  0.1118  0.1000  0.1000 0.1065 0.1563 0.1227  0.1789 0.2068 0.1339 0.2277
F-score 0.1509 0.1719  0.1884  0.1817  0.1817 0.1530 0.1783 0.1848  0.2211 0.1499 0.2263 0.2342
ACC 0.4758 0.4432 02393  0.2144  0.2080 0.2105 0.2656 02334  0.2171 0.3946 0.2174 0.6153
NMI 0.2338 0.1999  0.0309  0.0066  0.0126 0.0037 0.0524 0.0239  0.0143 0.1349 0.0071 0.3585
Purity 0.4855 0.4668  0.2650  0.2165  0.2168 0.3322 0.2766 0.2415  0.2310 0.5459 0.2180 0.6790
Citeseer ARI 0.2104 0.1797  0.0234  0.0003  0.0016 0.0006 0.0068 0.0010  0.0002 0.0619 0.0009 0.3580
Precision 0.3267 03313  0.1970  0.1784  0.1778 0.1803 0.1815 0.1781  0.1786 0.4033 0.1789 0.4782
F-score 0.3701 0.3220  0.2042  0.3016  0.3005 0.2684 0.2971 02976  0.2484 0.2804 0.3030 0.4674
ACC 0.3598 0.3321  0.4744 0.3733  0.2785 0.3690 0.4188 0.4221  0.3232 0.3564 0.4722 0.5589
NMI 0.0321 0.0355 0.1333  0.0636  0.0129 0.0583 0.0885 0.0820  0.0287 0.0362 0.1330 0.1837
Purity 0.3598 0.3501  0.4817  0.3835  0.2879 0.5226 0.4217 0.4221 0.3428 0.5359 0.4885 0.5813
GRAZ02 ARI 0.0357 0.0272  0.1273  0.0532  0.0006 0.0491 0.0802 0.0726  0.0180 0.0359 0.1251 0.1827
Precision 0.2721 02711 0.3354  0.2778  0.2521 0.2932 0.3109 0.3038  0.2623 0.3900 0.3263 0.3915
F-score 0.3368 0.2919  0.3697 0.3792  0.4000 0.3080 0.3164 03162 0.3243 0.3217 0.3867 0.3950

All experiments are conducted on an Ubuntu-16.04 system,
which contains a 2.1GHz Intel Xeon CPU and an Nvidia Tesla
P100 GPU. The implementation of DFP-GNN is available at
https://github.com/Xiaoshunxin/DFP-GNN.

B. Multi-view clustering

Quantitative Results. Comprehensive experiments are con-
ducted to validate the superiority of our framework DFP-GNN
in both quantitatively and qualitatively. In Table II and Table
III, the results of all approaches on ten popular benchmark
datasets are reported with six evaluation metrics. DFP-GNN
achieves the best or second-best results, sometimes obtaining a
significant margin, on all datasets over different evaluation pro-
tocols except for Caltech101 with the Purity metric. It shows
that DFP-GNN obtains significant improvements compared to
various multi-view clustering approaches.

Furthermore, several interesting phenomena can be observed
from the clustering results. First, DFP-GNN achieves com-
petitive performance on different datasets, demonstrating that
it is suitable for various clustering applications in practice.
As another deep learning-based algorithm, second, the perfor-
mance of AE2-Nets is worse than our method in all situa-
tions. A possible reason is that AE2-Nets utilizes a common
autoencoder instead of graph convolution and fails to capture
the feature and structure information simultaneously. Another
possible reason is that AE?-Nets fails to utilize the clustering
process to guide the training process. Third, most of the com-
pared algorithms achieve worse performance on the Citeseer
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dataset, in which there exist real-world relationships between
samples. In contrast, DPF-GNN obtains the best result since
the build graph captures the relationship between nodes and
makes the message passing mechanism play an important role.
Furthermore, LMVSC is efficient for large-scale datasets, such
as Caltech101, Cifar-10K and MNIST-10K, but it achieves
general performance on those datasets. For example, LMVSC
obtains the worst ACC result on the Caltechl01 dataset.
Compared with methods based on traditional graph learning,
our framework always achieves a robust ARI performance
on several benchmarks, including Caltech101, Cifar-10K and
Citeseer. In addition, DFP-GNN does not achieve performance
on Caltech101 as well as other datasets. One possible reason is
that most of the hyper-parameters of DFP-GNN are decided
from the datasets with only a few clusters. As a result, the
adjusted hyper-parameters may be unsuitable for Caltech101,
which has 101 different clusters.

Results Visualization. To intuitively demonstrate the clus-
tering results of different methods, we concatenate input mul-
tiple views and then utilize t-SNE to reduce the concatenated
form into a two dimensions space. From the visualization
shown in Fig. 2, we can observe that DFP-GNN is able to
obtain a clustering assignment, which is more similar to the
truth labels by comparing with other methods.

C. Ablation study

Several additional experiments are conducted to verify the
designed DFP-GNN framework. Most of the configurations of
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TABLE III
MULTI-VIEW CLUSTERING PERFORMANCES OF ALL COMPARED METHODS
THE BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED IN BOLD AND UNDERLINED, RESPECTIVELY

Datasets \ Methods ‘ ‘ k-means RMSC AMGL SwMC MVGL AE2-Nets MSC-IAS MCGC BMVC LMVSC GMC DFP-GNN
ACC 0.5643 0.5872  0.8177  0.6712  0.8147 0.7185 0.6982 0.6103  0.5355 0.5177 0.9037 0.9299
NMI 0.5219 0.5211  0.8002 0.7148  0.7886 0.6172 0.7175 0.6124  0.4838 0.4902 0.8427 0.8392
Purity 0.5949 0.6124  0.8362  0.7171  0.8147 0.7377 0.7485 0.6570  0.5445 0.5450 0.9037 0.9315
MNIST-10K ARI 0.4206 04305 0.7446  0.5678  0.7318 0.5534 0.6283 0.4349  0.3577 0.3494 0.8244 0.8544

Precision 0.4624 0.4593  0.7437  0.4911  0.6779 0.6040 0.5959 0.3992 04118 0.4264 0.8153 0.8664
F-score 0.4811 0.4917  0.7715  0.6171  0.7621 0.6140 0.6703 0.5070  0.4241 0.4163 0.8426 0.8667

ACC 0.4667 02343  0.6838  0.7048  0.6333 0.7314 0.7971 0.7810  0.6476 0.3429 0.7476 0.9238

NMI 0.4053 0.0579  0.6299  0.6745  0.5576 0.6604 0.7403 0.6601  0.6083 0.2460  0.7421 0.8429

Purity 0.4810 0.2419  0.7076  0.7429  0.6333 0.7790 0.8057 0.7810  0.6952 0.3810  0.7905 0.9286

MSRCv1 ARI 0.2569 0.0060  0.4980  0.5249  0.3949 0.5781 0.6492 0.5837  0.4785 0.1250  0.6400 0.8291
Precision 0.3208 0.1437  0.5095  0.5051  0.3972 0.6404 0.6725 0.6147  0.5229 0.2496 0.6121 0.8602

F-score 0.3785 0.1486  0.5796  0.6037  0.5007 0.6601 0.6998 0.6443  0.5554 0.2474  0.6968 0.8595

ACC 0.2100 0.2433  0.2266  0.1329  0.1075 0.2202 0.2449 0.1879  0.2121 0.1812 0.1650 0.2942

NMI 0.1095 0.1215  0.1381  0.0589  0.0360 0.1067 0.1270 0.1019  0.0970 0.0679 0.0788 0.1612

Purity 0.2138 02629  0.2479  0.1442  0.1175 0.2637 0.2798 02117  0.2279 0.3404  0.1787 0.3279

NUS-WIDE ARI 0.0420 0.0641  0.0514  0.0042  0.0019 0.0526 0.0637 0.0156  0.0610 0.0179 0.0124 0.0941

Precision 0.1080 0.1410  0.1162  0.0849  0.0838 0.1415 0.1358 0.0907  0.1278 0.1815 0.0888 0.1850
F-score 0.1592 0.1427  0.1596  0.1550  0.1539 0.1468 0.1489 0.1571  0.1561 0.1248 0.1592 0.1824

ACC 0.3307 0.4477 05388  0.2731  0.3002 0.5655 0.4972 05182 0.5737 0.5874  0.3400 0.7478
NMI 0.1773 03569  0.5105  0.1324  0.1903 0.4766 0.4290 0.3710  0.5288 0.4512 0.3142 0.5961
Purity 0.3430 0.4670 05791  0.2812  0.3077 0.6305 0.5170 0.5186  0.6001 0.6272 0.3501 0.7708
Out-Scene ARI 0.1222 0.2580  0.3832  0.0203  0.0824 0.3812 0.3107 0.1859  0.4021 0.3727 0.1925 0.5199

Precision 0.2155 0.3494 04016  0.1362  0.1662 04714 0.3693 0.2358  0.4534 0.4572 0.2243 0.6006
F-score 0.2531 03533 04762 02331  0.2754 0.4868 0.4072 0.3309  0.4829 0.4531 0.3546 0.6033

ACC 0.2495 0.2564  0.1412  0.1175  0.1245 0.2535 0.2453 0.2250  0.1445 0.2005 0.1165 0.3775

NMI 0.1577 0.1460  0.0335  0.0205  0.0255 0.1794 0.1517 0.1050  0.0198 0.0576 0.0204 0.2394

Purity 0.2875 02875  0.1463  0.1205  0.1270 0.3430 0.2881 0.2355  0.1470 0.3440  0.1205 0.4425

Youtube ARI 0.0876 0.0876  0.0076  0.0003  0.0009 0.0950 0.0750 0.0559  0.0130 0.0306 0.0004 0.1496
Precision 0.1649 0.1746  0.1059  0.0997  0.1000 0.1948 0.1631 0.1317  0.1073 0.2192 0.0997 0.2533

F-score 0.1951 0.1826  0.1138  0.1805  0.1805 0.2141 0.1723 0.1953  0.1543 0.1553 0.1806 0.2529
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Fig. 2. Visualization of the ground-truth labels and the clustering results of all compared multi-view clustering algorithms on the MNIST-10K dataset.
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TABLE IV
IMPACT OF DUAL FUSION MEASURED BY ACC, NMI, PURITY AND PRECISION. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Datasets Caltech101 Citeseer GRAZ02

Metrics ACC NMI Purity  Precision ACC NMI Purity  Precision ACC NMI Purity  Precision

OAF 0.3059 0.4137 0.3595 0.2798 0.4831 0.2287  0.5682 0.3595 0.4058  0.0857  0.4858 0.3106

OSF 0.2740  0.3767  0.3027 0.2362 0.5652 03127  0.6489 0.4363 0.5027  0.1928  0.5718 0.3930

Ours 0.3187 0.4239  0.3643 0.2828 0.6153 0.3585 0.6790 0.4782 0.5589 0.1837 0.5813 0.3915
TABLE V

IMPACT OF DUAL PROPAGATION MEASURED BY ACC, PURITY, PRECISION AND F-SCORE. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Datasets Caltech101 Citeseer GRAZ02
Metrics ACC Purity  Precision  F-score ACC Purity Precision  F-score ACC Purity  Precision  F-score
MLP/MLP 0.0875  0.0875 0.0283 0.0550 0.2117  0.3315 0.1788 0.3033 0.3991  0.5467 0.3144 0.3126
MLP/GNN 0.2206  0.2207 0.1285 0.2000 0.3270  0.4411 0.2414 0.2370 0.2846  0.4580 0.2528 0.4036
GNN/MLP 0.1738  0.1974 0.0734 0.1158 0.4553  0.5178 0.3320 0.3362 0.2846  0.4580 0.2528 0.4036
DFP-GNN 0.3187  0.3643 0.2828 0.3189 0.6153  0.6790 0.4782 0.4674 0.5589 0.5813 0.3915 0.3950
TABLE VI
THE CLUSTERING RESULTS TRAINED BY DIFFERENT OBJECTIVES. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD
Datasets Caltech101 Citeseer GRAZ02
Metrics ACC NMI ARI F-score ACC NMI ARI F-score ACC NMI ARI F-score
Ly 0.2207 0.4382 0.1918  0.1935 0.5447 0.3212 02778  0.4207 0.4533 0.1165 0.1052  0.3385
Ls 0.2489 0.4684 0.2943  0.2318 0.5864 0.3489 0.3057 0.4484 0.4885 0.1465 0.1395  0.3680
Le 0.2504 0.3493  0.1397  0.2758 0.4043 0.2023 0.1399 0.3125 0.5495 0.1834 0.1823  0.3941
Lyrs 0.2410 04715 02714  0.2299 0.6099 0.3579 0.3284  0.4538 0.4925 0.1311  0.1319  0.3576
Lrec 0.2768 0.3838  0.1585  0.3344 0.4004 0.2006 0.1370  0.3125 0.5467 0.1758 0.1726  0.3877
Lse 0.3126 04151 0.3138  0.3122 0.6105 0.3545 0.3506  0.4630 0.5467 0.1763  0.1780  0.3901
Lyse 0.3187 0.4239 0.3367 0.3189 0.6153 0.3585 0.3580 0.4674 0.5589 0.1837 0.1827  0.3950

all ablation studies are set according to the implementation
details except for the factors of the current analysis.

Impact of Dual Fusion. To validate the influence of the
adaptively dual fusion mechanism, we conduct an ablation
study to compare two single fusions with DFP-GNN. Specif-
ically, the first single fusion is attribute fusion (OAF) and
the second is structure fusion (OSF). For OAF, the transition
matrix used for the shared module is generated from the
fused feature matrix during the pretraining stage. For OSF, we
concatenate all learned preliminary embeddings to formulate
the fused representation. As shown in Table IV, the dual
fusion mechanism achieves the best result than two single
fusion strategies except for Precision on GRAZ02. In addition,
structure fusion is important for multi-view learning. How-
ever, most existing GNN-based methods usually only perform
feature-level fusion.

Influence of Dual Propagation. We conduct an additional
study to prove helpful of the designed dual propagation
mechanism for multi-view clustering. Specifically, we replace
the graph convolution operation with a multilayer perceptron
for both the preliminary and the shared modules. As a result,
there exist three different variants of DFP-GNN and termed
MLP/MLP, MLP/GNN and GNN/MLP, respectively. For ex-
ample, GNN/MLP means that the graph convolution used in
the shared module is replaced with a multilayer perceptron.
Several observations can be obtained from Table V. First,
dual propagation achieves significant improvements over other

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

variants. Second, DFP-GNN usually has a better result than
GNN/MLP and it demonstrates that applying message passing
over different views is important. However, most existing
methods only apply information propagation for each view
individually. Finally, MLP/GNN and GNN/MLP achieve a
worse performance than MLP/MLP on the GRAZ02 dataset.
A possible reason is that the value of £, is too small to guide
the clustering assigning.

Effectiveness of Combined Loss. We compare all single
objectives L., L and L., all dual combined objectives L.,
L. and L, with the final optimization target L,.;. to validate
the effectiveness of the designed optimization objective. For
those objectives without clustering loss L., the training would
be stopped when more than 100 epochs do not reduce the
minimum loss value and the learned embedding Z will be used
as the input of k-means to obtain the cluster assignments. Table
VI reports the corresponding results of various objectives in
the finetuning stage. Observation from Table VI shows that
L,s. achieves competitive results in most situations, except
NMI and F-score on Caltechl01. In addition, £, and L.
have different effects on different datasets. For example, L.
is important for Caltech101 and GRAZ02. This phenomenon
demonstrates that the proposed combined objective is suitable
for various clustering tasks.

Impact of Coefficients \; and \>. We design an experi-
ment to illustrate the sensitivity of A\; and A, with different
values and explore the relation among them measured by the

Authorized licensed use limited to: Fuzhou University. Downloaded on February 24,2023 at 09:09:23 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2023.3248173

IEEE TRANSACTIONS ON MULTIMEDIA

(f) MNIST-10K

(9) MSRCv1

(h) NUS-WIDE

(i) Out-Scene (j) Youtube

Fig. 3. Sensitivity analysis of parameters A1 and A2 for the proposed DFP-GNN framework on all benchmark datasets measured by the ACC protocol.
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Fig. 4. The convergence curve of the proposed multi-view clustering method. Results on five benchmark datasets with 20,000 training epochs are reported.

ACC metric. The values of \; and A5 are taken from 0.00001
to 10. As depicted in Fig. 3, DFP-GNN usually achieves better
results when \; and A\ have larger values. It demonstrates that
the used structure preservation loss L4 and clustering objective
L. are both important for multi-view clustering. Furthermore,
the performance would drop greatly when the value of L. is
too small on most datasets except BBCSport and MSRCv].
A possible reason is that the cluster assignments are derived
from the clustering layer, which is optimized by the £.. The
small weight of L. can result in the situation that the clustering
layer does not play the role of assigning.

Convergence Analysis. We plot the value of the combined
objective L,s. during the training process to validate the
convergence of our method. After the pretraining stage, DFP-
GNN only finetunes parameters of the whole framework and
the value of £,.s. would not change too much. Thus, we record
the loss value of DFP-GNN without pretrained weights in the
finetuning stage. In detail, we only record the value of L,
when updating the auxiliary target distribution P. Since the
training of other datasets would be stopped early, we report
the results on five benchmarks, including Cifar-10K, Citeseer,
NUS-WIDE, Out-Scene and Youtube. As shown in Fig. 4, our
method can rapidly converge in the first 2,500 epochs and then
gradually converge in the remaining epochs.

Complexity Analysis. Furthermore, we compare DFP-
GNN with other multi-view clustering algorithms in terms
of computational complexity in Table VII. In detail, ¢, c,
n, d and V denote the number of iterations, groups, feature

. ©2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE germission. See https://www.ieee.org/publications/rights/index.html for more information.
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TABLE VII
COMPARISON OF COMPUTATIONAL COMPLEXITIES OF ALL
MULTI-VIEW CLUSTERING ALGORITHMS

Methods Computational complexity

RMSC O(tn?)

AMGL O(ten?)

SwMC O(ten?)

MVGL O(t(n2V?2 +nV?3))
AE2-Nets O(tnd?V)
MSC-1AS O(tn?)

MCGC O(tn?V)

BMVC O(tn(c+V))

LMVSC  O(tn(d+ c?) + (n+ VHV))

GMC O(tn%(c+ V) +ndV))
DFP-GNN O(tndV (n + d))

dimensions, samples and views, respectively. Observation from
Table VII shows that most of the multi-view learning methods
approximately cost time in O(n?). Note that the computational
complexity of the graph convolution operation used in DFP-
GNN can be reduced by efficiently being implemented as a
product of a sparse matrix with a dense matrix.

V. CONCLUSION

We proposed a deep learning framework termed dual fusion-
propagation graph neural network to capture multiple informa-
tion among different views and then utilize them to refine the
results of multi-view clustering. The view-specific propagation
used in the preliminary module is efficient to capture the
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complementarity and learn a discriminative representation
for each view. Then, the dual fusion mechanism has been
proved that it is able to adaptively combine both attribute and
structure information among different views simultaneously.
Finally, the consistent information can be captured by the
shared module and the whole framework is optimized under a
combined objective. Comprehensive experiments demonstrate
that our method has achieved competitive results on ten
popular benchmark datasets concurrently. Our future work
includes generalizing the proposed DFP-GNN to multi-view
semi-supervised learning tasks. Specifically, DFP-GNN will
be used to generate high-confidence pseudo labels under the
guide of a few supervised information. It would be efficient
to propagate the supervised information to unlabeled samples
via the adjacency matrix.
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