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Multi-view clustering has attracted increasing attention by reason of its ability to leverage
the complementarity of multi-view data. Existing multi-view clustering methods have
explored nonnegative matrix factorization to decompose a matrix into multiple matrices
for feature representations from multi-view data, which are not discriminative enough
to deal with the natural data containing complex information. Moreover, most of multi-
view clustering methods prioritize the consensus information among multi-view data,
leaving a large amount of information redundant and the clustering performance deterio-
rated. To address these issues, this paper proposes a multi-view clustering framework that
adopts a diversity loss for deep matrix factorization and reduces feature redundancy while
obtaining more discriminative features. We then bridge the relation between deep auto-
encoder and deep matrix factorization to optimize the objective function. This method
avoids the challenges in the optimization process. Extensive experiments demonstrate that
the proposed method is superior to state-of-the-art methods.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

Clustering is an important field in unsupervised learning. Natural data usually contains a lot of redundant information,
therefore researches in massive numbers optimize clustering performance by learning more discriminative features.

Many studies have verified the effectiveness of matrix factorization in clustering tasks [1,2]. Matrix factorization com-
presses the original high-dimensional data by finding a set of basis to improve the performance of many machine learning
tasks, such as matrix completion [3,4], recommender systems [5,6], information retrieval [7], community detection [8,9] and
image recognition [10]. Nonnegative matrix factorization (NMF) is one of the most widely utilized dimensionality reduction
techniques, which decomposes a nonnegative data matrix into two nonnegative matrices. However, some characteristics
limit the performance of NMF. One of the characteristics is that NMF requires the original data matrix to be nonnegative,
whose application scenarios are relatively limited. To address this limitation, semi-nonnegative matrix factorization
(Semi-NMF) yields nonnegative factors but does not require that the input data matrix is nonnegative [11]. Data represen-
tations achieved in this way are usually mixed with complex information, which may become an obstacle when applying
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Semi-NMF or NMF to clustering problems. Deep matrix factorization (DMF) has been proposed to handle this issue [12,13],
which employs a multi-layer structure to learn a nonnegative hidden representation of the original data.

In recent years, a mass of data described in multiple feature representations has appeared. For example, heterogeneous
features can be extracted from social images. Plenty of researches have indicated that taking advantage of the complemen-
tarity amongmultiple views could improve the performance of many machine learning tasks, such as semi-supervised learn-
ing [14,15], transfer learning [16,17], and discriminant analysis [18,19]. Multi-view clustering by leveraging the
complementarity among data in multiple views generally outperforms a single-view clustering method [20,21]. Therefore,
multi-view clustering has caused widespread attention [22,23]. Recently, NMF has been applied to multi-view clustering
[24,25]. Some prior multi-view clustering methods leveraged deep matrix factorization to provide more informative hidden
representations for clustering. Huang et al. [26] developed a deep NMF model to learn the hidden representations associate
with different implicit lower-level attributes. Zhao et al. [27] utilized the consensus matrix as a constraint to enforce multi-
view data so as to share the same representation after multi-layer factorization, and constructed multiple graphs to preserve
the geometric structure in each view. Wei et al. [28] generated cluster assignments in each layer and achieved diversity by
minimizing a redundancy quantification term. Chen et al. [29] obtained partition representations of each view and jointly
exerted them with the most desirable representation for multi-view clustering tasks. Nevertheless, most of multi-view
matrix factorization methods for clustering methods leveraged the consensus representation matrix to obtain similarities
among multiple views. These approaches put more emphases on the shared information among multiple views, which
may lead to several limitations. For instance, data representations achieved by these methods contain mutually redundant
information and lack diversity. Wang et al. [30] used a diversity term to reduce the redundancy and enhance diversity among
multi-view representations.

At present, matrix factorization has revealed its effectiveness in clustering problems, but there are still some limitations
in the objective function optimization. A major limitation of NMF is that it fails to effectively handle non-linear data. The
methods based on NMF and DMF suffer from some challenges during the optimization process, such as nonnegativity and
orthogonality. Rising to this challenge, we optimize our objective function through deep auto-encoders. Deep auto-
encoder is a significant branch of deep learning to utilize artificial neural networks with representation learning, and it is
suitable for modeling complex non-linear relations. By adding non-linear activation functions [31], auto-encoders achieved
a more powerful representation ability. Therefore, deep auto-encoders and their variants have been widely applied to learn-
ing effective latent features [32,33].

This paper proposes a novel multi-view clustering method named diversity embedding deep matrix factorization for
multi-view clustering, abbreviated as DDMF. The proposed method performs deep matrix factorization on the data matrix
to achieve a more discriminative latent data representation for each view. At the same time, a diversity term is adopted
among the learned data representations of different views to increase diversity and reduce redundancy. For more effective
optimization, deep matrix factorization is transformed into deep neural networks with reconstruction error and constraints
on the hidden layer, and activation functions are utilized to ensure nonnegative constraints. Taking two views as an example,
the overall framework of the proposed method is illustrated in Fig. 1. The main contributions of this paper can be summa-
rized as follows.

� A deep matrix factorization based multi-view clustering model is proposed, which adopts diversity loss to reduce redun-
dancy and enhance diversity of data representations.

� By bridging the relation between deep matrix factorization and deep auto-encoders, the objective function is optimized
while preserving nonnegative constraints of outputs.

� Extensive experiments were conducted on six real world datasets to demonstrate the effectiveness of the proposed
method against existing state-of-the-arts.

2. Related work

Multi-view clustering aims to exploit complementary information from multi-view data to achieve better clustering per-
formance. Among plenty of models, graph-based and subspace-based models have generated substantial publicity [34].
Graph-based models aim to apply the similarity matrix and typical spectral clustering to obtain the final clusters. Wang
et al. [35] proposed a framework that learned each view graph matrix and a unified matrix in a mutual reinforcement man-
ner, and automatically weighted each data graph matrix to derive the unified matrix, where a rank constraint is imposed on
the Laplacian matrix. Kang et al. [36] performed graph fusion and spectral clustering simultaneously, and the fusion graph
approximated the original graph of each individual view while maintaining an explicit cluster structure. Huang et al. [37]
performed a multi-view clustering task while simultaneously learning similarity relationships with multiple kernel learning
ability. Qiang et al. [38] efficiently generated representative anchors and constructed anchor graphs on multiple views to
directly solve the spectral clustering problem. Constructing a more accurate similarity graph, automatically allocating opti-
mal weight for each view, and finding the cluster indicator are simultaneously accomplished.

Furthermore, subspace-based models learning a new data representation are more applicable to clustering tasks from
multiple data representations. Wang et al. [39] harnessed the complementary information between distinct representations
by introducing a position-aware exclusivity term. Chen et al. [40] adopted the least square regression to learn global consen-
sus information shared by multiple views and the column-sparsity norm to measure the residual information. Lv et al. [41]
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Fig. 1. An overview of the proposed framework. An identity matrix is utilized as the input of the network of each view, and the data representation of the
view is output in the first layer. After that, the graph regularizer of each view is constructed, and the diversity loss between the two distinct views is
constructed. The output of the decoder is utilized to define the reconstruction loss.
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learned a view-specific representation from data by exploiting the local structure within each view, then generated a low-
rank tensor representation from the view-specific representation to capture a high-order correlation across multiple views.
Wang et al. [42] provided a method to solve the problem of higher-order matrix decomposition by transforming it into a task
with unitary invariance. The matrix factorization based model is a particular category in the multi-view subspace clustering.
Liu et al. [43] added the measurement of inconsistency between the latent representation of each view and the consensus
matrix to the objective function to realize multi-view information sharing. Zong et al. [25] preserved the locally geometrical
structure of the multi-view data space by leveraging consensus manifold and coefficient matrix with multi-manifold regu-
larization. Wang et al. [44] extended concept factorization to deep concept factorization. Huang et al. [45] improved the way
of weight assignments so that the weight of each view is automatically assigned without introducing extra hyperparameters.
Nevertheless, most of the above methods preferred to learn an ordinary representation, which might not efficiently exploit
complementary information among various views. Multi-view clustering methods reducing redundancy and obtaining more
complementary data representations need to be developed urgently.

3. The proposed method

In this section, we will first review the deep matrix factorization, then a multi-view clustering method called diversity
embedding deep matrix factorization, named DDMF is proposed. The method intends to leverage deep matrix factorization
to learn latent data representations that retain information more applicable for clustering while enhancing the diversity of
data representations of distinct views. We propose an auto-encoder based method to recover the objective function with
nonnegative constraints. To facilitate understanding the following calculation process, we summarize the main notations
in Table 1.

3.1. Revisiting deep matrix factorization

NMF aims to find two nonnegative matrices U and V, and minimizes the following objective function:
min
UP0;VP0

kX� UVTk2F : ð1Þ
Thus, NMF tries to search for a compressed approximation of the original data matrix, i.e., X � UVT . Semi-NMF extends
NMF by relaxing the basis matrix U to real values while requiring V to be nonnegative.

Natural data contains a variety of information, and a single Semi-NMF is affected by other information, there-
fore it fails to extract category information well. Applying deep semi-NMF helps to solve this problem relatively
well and achieved acceptable results in data representation [12]. The multi-layer decomposition process is defined
as follows:
X � Z1H
þ
1 ;

X � Z1Z2H
þ
2 ;

..

.

X � Z1 � � �ZmH
þ
m;

ð2Þ
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Table 1
Main notations of the DDMF method.

Symbols Description

X vð Þ the data matrix in the v-th view

Z vð Þ
i

the i-th layer weight matrix of DMF of the v-th view

H vð Þ
i

the i-th layer output matrix of DMF of the v-th view

H vð Þ the representation matrix of DMF of the v-th view

h vð Þ
i

the i-th data point of DMF of the v-th view

r �ð Þ activation function (relu/tanh/. . .)

E vð Þ the weight of the v-th view encoder

C vð Þ the output of the v-th view decoder

W vð Þ
i

the i-th layer weight of the v-th view decoder

C vð Þ
i

the i-th layer output of the v-th view decoder
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where Zi denotes the i-th layer basis matrix, and Hþ
i is the i-th layer representation matrix. Trigeorgis et al. [12] experi-

mented that deep matrix factorization could learn better latent representations than single-layer Semi-NMF according to
the attribute with the lowest variability in the data.

3.2. The objective function

Given a V-view multi-view dataset X ¼ X vð Þ
n oV

v¼1
with X vð Þ 2 Rd vð Þ�n, where d vð Þ is the feature dimension of the v-th view

and n denotes the number of samples. Deep matrix factorization can be extended to multi-view setting, where H vð Þ 2 Rd�n

denotes the representation matrix in the v-th view. Deep matrix factorization is performed on feature matrices of distinct

views. The i-th layer weight matrix of the v-th view is denoted as Z vð Þ
i . And combining these decomposition processes, the

objective function can be formulated as follows:
min
Z vð Þ
i

;H vð Þ
i

;H vð Þ

XV
v¼1

X vð Þ � Z vð Þ
1 Z vð Þ

2 � � �Z vð Þ
m H vð Þ

��� ���2
F
; s:t:H vð Þ

i � 0;H vð Þ � 0; ð3Þ
where the objective function can be regarded as a reconstruction error between the original data matrix X vð Þ and the recon-

structed data matrix Z vð Þ
1 H vð Þ

1 in each view. And H vð Þ
i is the output of the i-th layer and H vð Þ ¼ H vð Þ

m as Eq. (2).
To exploit more comprehensive information, it is essential to guarantee the diversity of the representation matrices

extracted from the multi-view data, which requires the orthogonality of the feature vectors of the same sample from distinct
views. Orthogonality means that the dot product of two vectors is zero, which can be guaranteed by minimizing the follow-
ing function:
h vð Þ
i

T � h wð Þ
i ¼

Xd
j¼1

h vð Þ
ij � h wð Þ

ij ; ð4Þ
where h vð Þ
ij is the j-th column element of h vð Þ

i . Given two distinct views, the following item is applied to ensuring the orthog-
onality of the representation vector:
tr H vð ÞTH wð Þ
� �

¼
Xn
i¼1

h vð Þ
i

T � h wð Þ
i ; ð5Þ
For a dataset with more than two views, the diversity term is expressed as follows:
Ld ¼
X
v–w

tr H vð ÞTH wð Þ
� �

ð6Þ
Retaining geometric information in each view as much as possible is based on the manifold assumption that if two data
points xi and xj are close in the original feature space, the representations of these two data points should be close to each
other. This can be achieved by minimizing the following function:
Lg ¼ 1
2

Xn
i;j

a vð Þ
ij h vð Þ

i � h vð Þ
j

��� ���2
F

� �
¼ tr H vð ÞL vð ÞH vð ÞT

� �
: ð7Þ
For each view, a normalized laplacian matrix is constructed by the graph in k-nearest neighbors for the v-th view, denoted

as L vð Þ 2 Rn�n. The weight matrix A vð Þ can be constructed by a Gaussian kernel. L vð Þ is defined as
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L vð Þ ¼ D vð Þ�1
2 D vð Þ � A vð Þ
� �

D vð Þ�1
2, where d vð Þ

ii ¼Pja
vð Þ
ij is the diagonal element of D vð Þ.

To avoid over-fitting of multi-view data, a smoothness regularizer kH vð Þk2F is combined with the objective function. By
incorporating reconstruction error Lr , graph regularizer Lg , diversity loss Ld and smoothness regularizer Ls, we obtain
the following objective function:
min
Z vð Þ
i

;H vð Þ
i

;H vð Þ

XV
v¼1

X vð Þ � Z vð Þ
1 Z vð Þ

2 � � �Z vð Þ
m H vð Þ

��� ���2
F|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}Reconstruction Lrð Þ

 
þ k1tr H vð ÞL vð ÞH vð ÞT

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}GraphRegularizer Lgð Þ

þk2 H vð Þ
��� ���2

F|fflfflfflffl{zfflfflfflffl}Smoothness Lsð Þ

!
þ k3

X
v–w

tr H vð ÞTH wð Þ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}Diversity Ldð Þ; s:t:H
vð Þ
i � 0;H vð Þ � 0;

ð8Þ
where k1; k2 and k3 are trade-off parameters to control weights of four loss terms.
After solving the objective function (8), the optimized representation matrix in each view H vð Þ is obtained. The average

value of the representation matrices H vð Þ learned from all views is regarded as the global representation matrix H�:
H� ¼

XV
v¼1

H vð Þ

V
: ð9Þ
Typical clustering method K-means is performed on H� to achieve the final clustering results. Due to complex constraints
of the objective function, we employ an auto-encoder based method for its optimization.
3.3. Optimization method

There is some consistency between deep matrix factorization and deep auto-encoders. A deep auto-encoder inputs orig-
inal data, learns a data representations with a multi-layer encoder, as well as recovers input data in the output layer of a
multi-layer decoder. They all reconstruct the original data through a multi-layer structure. The output of each layer con-
structs the output of the next layer with a weight matrix, while constraining some properties of the output, such as nonneg-
ativity. Deep matrix factorization obtains the hidden features at the last decomposition, and a deep auto-encoder yields the
output of the encoder as the hidden features. For the V-view case, we employed V deep auto-encoders to optimize the objec-
tive function (8). We input an identity matrix I 2 Rn�n into the v-th one-layer encoder whose dimension is set to d. Therefore,

the output of the v-th encoder C vð Þ ¼ r E vð Þ
� �

is utilized as the data representation in the v-th view corresponding to H vð Þ. And

data representations of the i-th layer of the v-th view decoder C vð Þ
i corresponding to H vð Þ

i are defined as:
C vð Þ
i ¼ r C vð Þ

iþ1W
vð Þ
iþ1

� �
; ð10Þ
where r �ð Þ is utilized to ensure that the output of each layer satisfies nonnegative constraints in deep matrix factorization.

Here C vð Þ is regarded as the last layer output of the deep matrix factorization, and the reconstruction error is evaluated on

C vð Þ
1 W vð Þ

1 .
In this way, the relation between the objective function (8) and deep auto-encoders is established. During the optimiza-

tion, we exploit the output of the final layer of the decoder to approximate the original X vð Þ. Therefore, the loss function of the
objective function (8) can be rewritten as the following form:
J E vð Þ;W vð Þ
i

� �
¼

XV
v¼1

Lr X vð Þ;C vð Þ
1 W1

� ��
þ k1tr C vð ÞL vð ÞC vð ÞT

� �

þk2 C vð Þ
��� ���2

F

�
þ k3

X
v–w

tr C vð ÞTC wð Þ
� �

:

ð11Þ
Then, we leverage the gradient descent method in deep matrix factorization to solve the objective function. The weight
matrix of the encoder E vð Þ is updated by the following rule:
E vð Þ tð Þ ¼ E vð Þ t�1ð Þ � ar
E vð Þ t�1ð ÞJ E vð Þ;W vð Þ

i

� �
; ð12Þ
where E vð Þ tð Þ
denotes the t-th iteration of E vð Þ;a denotes the learning rate and rE vð ÞJ E vð Þ;W vð Þ

i

� �
is the gradient of E vð Þ, cal-

culated by:
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rE vð ÞJ E vð Þ;W vð Þ
i

� �
¼ @J E vð Þ ;W vð Þ

ið Þ
@E vð Þ ¼ @J

@C vð Þ
@C vð Þ

@E vð Þ

¼ @C vð Þ

@E vð Þ
@Lr

@C vð Þ þ 2k1L
vð ÞC vð Þ þ 2k2C

vð Þ þ k3
X
v–w

C wð Þ
 !

:
ð13Þ
The weight of each layer W vð Þ
i in the decoder is iteratively updated by:
W vð Þ
i

tð Þ ¼ W vð Þ
i

t�1ð Þ � ar
W vð Þ

i

t�1ð ÞJ E vð ÞW vð Þ
i

� �
¼ W vð Þ

i

t�1ð Þ � a @Lr

@W vð Þ
i

ð14Þ
After training process, data representation matrix of each view H vð Þ is restored by the output of the encoder C vð Þ. The
whole process of DDMF is summarized in Algorithm1.

Algorithm1 Diversity embedding deep matrix factorization for multi-view clustering (DDMF)

Input: Multi-view data X, trade-off parameters k1, k2 and k3, number of clusters k, dimension of latent data
representations d.

Output: Cluster labels of all samples.

1: Initialize the weight of each layer in the decoder W vð Þ and the encoder E vð Þ of each view.
2: repeat
3: Input an identity matrix into the encoder of each view to obtain latent and reconstructed features, then calculate

the loss by Equation (11).

4: Update the weights of encoders E vð Þ
n oV

v¼1
by Equation (12).

5: Compute the weight of each layer in decoder W vð Þ
i

n oV

v¼1
by Equation (14).

6: until Convergence

7: Input an identity matrix into the encoders of all views to obtain a data representation matrix of each view H vð Þ.
8: Calculate the global data representation H� by the mean of data representations of all views by Equation (9).
9: Perform K-means on H�.
10: return Cluster labels of all samples.
4. Experiments and analysis

In this section, we conduct experiments on several real-world multi-view data-sets to verify the effectiveness of the pro-
posed method by comparing it with several typical and state-of-art multi-view clustering methods.

4.1. Datasets

Experiments are carried out on six publicly available datasets to verify the effectiveness. Detailed descriptions of these
datasets are as follows:

ALOI1 is a color image collection of 1,000 small objects. Four kinds of features are extracted from each image, including RGB
color histograms, HSV color histograms, color similarities and Haralick texture features.

Caltech1012 consists of 9,144 images of 102 categories belonging to 101 object categories and a background clutter cate-
gory. Each image is represented by 6 kinds of features: Gabor, wavelet moments, centrist, HoG, GIST, and LBP.

Notting-Hill3 dataset is derived from the movie ‘‘Notting-Hill”. The dataset consists of 4,660 face images of 5 major casts in
76 tracks.

ORL4 consists of 400 images from 40 individuals. Ten images for each individual vary in lighting, facial expressions and facial
details.

YaleB5 contains 38 facial image individuals, and each individual has 64 images. For the first 10 objects, 640 images are cho-
sen for the experiment.
://elki.dbs.ifi.lmu.de/wiki/DataSets/MultiView.
://www.vision.caltech.edu/ImageDatasets/Caltech101.
s://rdrr.io/github/schochastics/networkdata/.
://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.
://vision.ucsd.edu/content/yale-face-database.
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Youtube6 is a dataset of video games of 2,000 samples. Each sample is described in both audio features (mfcc, volume
stream, and spectrogram stream) and visual features (cuboids histogram, hist motion estimate, and hog features).

The statistics and brief descriptions of six experimental datasets are summarized in Table 2.

4.2. Compared algorithms

To fairly validate the effectiveness of the proposed method, a typical clustering method K-means and the following five
state-of-the-art methods are chosen for comparison.

MLAN modifies the similarity graph of all view data in each iteration until achieving the final optimal graph, and learns
each view weight coefficient to perform clustering and classification tasks [46].

SwMC automatically assigns appropriate weights to various views and explores the Laplacian rank constraint graph, so
that an additional clustering method is not required [47].

MSC-IAS intends to construct an intactness-aware similarity matrix under the assumption that the similarity should have
maximum dependence with the corresponding points in the intact space [48].

MCGC imposes a rank constraint on the Laplacian matrix to learn a consensus graph with k connected components and
minimizes the divergence between different views [49].

CGD captures the underlying manifold geometry structure of original data and learns an optimized unified graph by
cross-view graph diffusion for multi-view data clustering [50].

4.3. Results and analysis

All methods used for the comparison were run on each dataset with default parameters. The balancing parameters k1; k2

and k3 range in 10�2;10�1;1;101;102
n o

. The dimension of data representation is set to 300 in each view. And each decoder

consists of two fully connected layers activated by the sigmoid function with the neuron numbers of (100, 100). Due to the
initialization sensitivities of most methods, each method is performed ten times on each dataset, and the average values and
standard deviations of the three evaluation metrics are reported. The results evaluated by ACC, NMI and ARI are presented in
Tables 3–5.

Each multi-view clustering method outperforms K-means, which demonstrates that clustering performance can be
improved by exploiting the complementarity among heterogeneous features. The experimental result indicates that the pro-
posed method achieves the best performance among compared state-of-art methods on all test datasets. Especially, the per-
formance on ALOI and Notting-Hill dataset is improved with a large margin, while the performance on Caltech101 is also
comparable. This can be interpreted that various features in ALOI and Notting-Hill have low similarities, therefore represen-
tations can be extracted by exploring the advantage of diversity loss. Clustering in the Notting-Hill dataset serves as a more
challenging task due to plenty of changes in lighting conditions and the angle of the casts. Therefore, the strength is more
obvious in the dataset where the information in each view is more complex and the similarity among different views is
lower. Furthermore, it helps to explain why the performance on Caltech101 and YouTube is less impressive. These indicate
that through deep matrix factorization, and by enhancing the diversity of data representations, the global data representa-
tion learned frommultiple views exhibits more discriminative power. To more intuitively demonstrate the advantages of our
method over other methods, we report the visualization results on ALOI in Fig. 2.

4.4. Convergence analysis

DDMF leverages an auto-encoder based method to minimize the objective function (8). In order to validate the conver-
gence of DDMF, Fig. 3 illustrates the variations of objective function values with the number of iterations on six datasets. To
illustrate the convergence curves more clearly, we change the objective function values to the scale of log10. We set a low
learning rate to prevent over-fitting on a specific view, the objective function values decrease stably as the number of iter-
ations increases. And the optimization methods takes around 5,000 iterations for the objective function to converge.

4.5. Parameter sensitivity analysis

For the sake of verifying the influence of various parameter settings on model performance, we conduct parameter sen-
sitivity analysis in this subsection. In DDMF, there are two essential parameters k1 and k3 to balance the weights between the
graph regularizer and the diversity term. We employ a grid search strategy to find the best choices for k1 and k3 in each data-

set, and both of them range in 1;10; � � � ;105
n o

. We fix the weight of the smoothing term k2 as 0.1. The performance is mea-

sured by clustering accuracy, and all results are illustrated in Fig. 4. When the values of k1 and k3 are relatively large, the
clustering performance is comparatively superior. This can be explained by that small k1 and k3 fail to tolerate reconstruction
error. When k1 than k3 are relatively close, DDMF can achieve favorable clustering performance. DDMF comes with the best
6 https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset.
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Table 2
A description of experimental datasets.

Dataset # Views # Samples # Classes # Dimensions of each view

ALOI 6 1,079 10 64/64/77/13
Caltech101 6 9,144 102 48/40/254/1,984/512/928
Notting-Hill 3 4,660 40 6,750/2,000/3,304
ORL 3 400 40 4,096/3,304/6,750
YaleB 3 650 10 2,500/3,304/6,750
Youtube 6 2,000 10 2,000/1,024/64/512/64/647

Table 3
Accuracy (%) for compared algorithms on multiple datasets. The best results are highlighted in bold (The higher the better).

Dataset ALOI Caltech101 Notting-Hill ORL YaleB Youtube

K-means 47.49 (3.31) 13.37 (0.45) 63.71 (6.60) 59.03 (2.41) 17.98 (1.32) 24.21 (1.62)
MLAN 58.94 (5.18) 19.47 (0.64) 59.21 (0.00) 77.75 (0.00) 34.31 (0.00) 16.33 (1.01)
SwMC 47.73 (0.00) 14.11 (0.00) 33.88 (0.00) 74.75 (0.00) 37.08 (0.00) 19.05 (0.00)
MSC-IAS 59.39 (4.25) 18.36 (0.28) 65.45 (9.77) 73.32 (2.16) 53.18 (2.65) 28.45 (0.77)
MGCG 55.51 (0.00) 23.63 (0.00) 52.34 (0.00) 81.00 (0.00) 29.54 (0.00) 30.00 (0.00)
CGD 70.99 (0.00) 10.65 (0.00) 31.24 (0.00) 78.75 (0.00) 32.92 (0.00) 21.30 (0.00)
DDMF 96.08 (0.76) 24.24 (0.49) 93.56 (2.07) 84.83 (1.64) 62.03 (1.04) 33.03 (1.08)

Table 4
Normalized mutual information (%) for compared algorithms on multiple datasets. The best results are highlighted in bold (The higher the better).

Dataset ALOI Caltech101 Notting-Hill ORL YaleB Youtube

K-means 47.34 (2.14) 30.30 (0.17) 57.95 (4.85) 77.87 (1.35) 09.14 (2.37) 15.08 (0.58)
MLAN 59.37 (4.31) 30.36 (2.46) 55.50 (0.00) 88.46 (0.00) 31.60 (0.00) 06.14 (1.12)
SwMC 48.66 (0.00) 25.87 (1.56) 08.77 (0.00) 89.04 (0.00) 36.06 (0.00) 11.07 (0.00)
MSC-IAS 70.05 (1.79) 38.11 (0.22) 51.15 (9.12) 86.75 (1.39) 52.25 (2.36) 15.73 (0.48)
MCGC 55.41 (0.00) 26.27 (0.00) 52.34 (0.00) 90.30 (0.00) 26.69 (0.00) 17.41 (0.00)
CGD 68.72 (0.00) 27.06 (0.00) 05.23 (0.00) 89.17 (0.00) 30.86 (0.00) 11.04 (0.00)
DDMF 96.31 (1.13) 46.41 (0.25) 87.57 (5.02) 92.98 (0.62) 68.80 (1.27) 22.30 (1.63)

Table 5
Adjusted rand index (%) for compared algorithms on multiple datasets. The best results are highlighted in bold (The higher the better).

Dataset ALOI Caltech101 Notting-Hill ORL YaleB Youtube

K-means 32.98 (2.89) 07.99 (0.35) 49.68 (6.85) 46.34 (2.81) 03.00 (1.07) 07.91 (0.94)
MLAN 34.54 (5.55) 00.39 (0.12) 51.05 (0.00) 66.86 (0.00) 08.99 (0.00) 01.98 (0.63)
SwMC 20.41 (0.00) 00.56 (0.00) 02.88 (0.00) 56.42 (0.00) 12.56 (0.00) 03.61 (0.00)
MSC-IAS 53.24 (3.49) 10.60 (0.25) 49.31 (9.38) 62.66 (3.28) 33.04 (2.15) 09.50 (0.32)
MCGC 35.42 (0.00) 00.38 (0.00) 41.25 (0.00) 69.96 (0.00) 12.25 (0.00) 08.80 (0.00)
CGD 44.32 (0.00) 03.78 (0.00) 02.21 (0.00) 66.63 (0.00) 12.88 (0.00) 06.35 (0.00)
DDMF 91.25 (1.84) 17.01 (0.90) 87.08 (5.82) 78.09 (1.60) 53.63 (1.64) 14.09 (1.56)

Z. Chen, P. Lin, Z. Chen et al. Information Sciences 610 (2022) 114–125
performance on most datasets. In general, the balancing parameters k1 and k3 within certain ranges can promote DDMF to
obtain superior clustering performance.
4.6. Ablation studies

The ablation studies of graph regularizer and diversity loss on four datasets are presented in Table 6. The clustering per-
formance is unacceptable while neither of both constraints exists. Reconstruction term Lr is the basement of our model to
guarantee the main performance. Both diversity term Ld to enhance the diversity and graph regularizer term Lg to mine
geometric information of each view can improve the experimental results. The addition of smoothness term Ls to prevent
overfitting has no clear effect on ALOI, but significant optimizations on Notting-Hill and ORL. Any one of the three constraints
can optimize the clustering performance. When all three constraints are combined, the clustering performance is improved
more significantly than that achieved by reconstruction termLr or adding any one of the other three terms (Lg ;Ls andLd).
In conclusion, the experimental results verify that data representation preserving geometric information with diversity
embedding can largely improve the clustering performance of multi-view deep matrix factorization.
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Fig. 2. Visualizations of compared multi-view clustering methods and ground-truth on ALOI.

Fig. 3. Convergence curve of the objective function, where the proposed method converges around 5,000 iterations.
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Fig. 4. The clustering accuracy of DDMF on six datasets with k1 and k3 chosen with grid search strategy, varying in 1;10; � � � ;105
n o

.

Table 6
Ablation studies of the proposed method on three datasets evaluated by ACC (%), NMI (%) and ARI (%). The values in brackets are standard deviations.

Dataset Methods ACC NMI ARI

ALOI Lr 89.81 (1.02) 83.47 (1.94) 76.63 (2.22)
Lr + Lg 92.81 (0.61) 87.99 (0.90) 83.53 (1.38)
Lr + Ld 90.31 (1.27) 83.73 (1.96) 77.91 (2.96)
Lr + Ls 89.58 (0.88) 82.87 (1.43) 76.30 (1.60)
Lr + Lg + Ld 97.85 (2.15) 96.22 (3.62) 95.43 (4.59)

Notting-Hill Lr 62.28 (4.10) 47.05 (0.40) 38.52 (7.69)
Lr + Lg 75.17 (6.77) 60.56 (8.31) 61.93 (9.69)
Lr + Ld 65.76 (1.25) 45.49 (0.99) 41.26 (1.45)
Lr + Ls 68.98 (9.76) 51.40 (5.14) 49.12 (8.82)
Lr + Lg + Ld 94.16 (1.06) 89.85 (2.01) 89.20 (1.97)

ORL Lr 57.85 (2.21) 76.36 (2.17) 41.63 (3.90)
Lr + Lg 64.40 (2.78) 80.94 (1.69) 50.75 (2.39)
Lr + Ld 71.13 (2.12) 86.30 (1.13) 60.69 (2.31)
Lr + Ls 62.20 (1.86) 78.91 (1.26) 45.46 (2.50)
Lr + Lg + Ld 86.21 (1.97) 93.17 (0.77) 79.77 (2.20)

Z. Chen, P. Lin, Z. Chen et al. Information Sciences 610 (2022) 114–125
5. Conclusion

In this paper, we proposed a deep matrix factorization model with diversity embedding named DDMF for multi-view
clustering tasks. Deep matrix factorization learns more effective latent features from complex information while diversity
loss is adopted to reduce the redundancy among the data representations of various views. DDMF incorporated manifold
information with the graph regularizer. To deal with the issue, we constructed the model with neural networks to optimize
the objective function. By comparing with five state-of-the-art methods, comprehensive experiments on six datasets were
conducted to validate the effectiveness of DDMF. Experiment results showed that DDMF boosted more significant advan-
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tages when there exists low similarity among various view features. Therefore, in the future work, we will take the consen-
sus information into consideration, which is also a vital factor for multi-view clustering.
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