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Differentiable Bi-Sparse Multi-View Co-Clustering

Shide Du ", Zhanghui Liu, Zhaoliang Chen

Abstract—Deep multi-view clustering utilizes neural networks
to extract the potential peculiarities of complementarity and con-
sistency information among multi-view features. This can obtain
a consistent representation that improves clustering performance.
Although a multitude of deep multi-view clustering approaches
have been proposed, most lack theoretic interpretability while
maintaining the advantages of good performance. In this paper,
we propose an effective differentiable network with alternating
iterative optimization for multi-view co-clustering termed differ-
entiable bi-sparse multi-view co-clustering (DBMC) and an ex-
tension named elevated DBMC (EDBMC). The proposed meth-
ods are transformed into equivalent deep networks based on the
constructed objective loss functions. They have the advantages
of strong interpretability of the classical machine learning meth-
ods and the superior performance of deep networks. Moreover,
DBMC and EDBMC can learn a joint and consistent collaborative
representation from multi-source features and guarantee sparsity
between multi-view feature space and single-view sample space.
Meanwhile, they can be converted into deep differentiable network
frameworks with block-wise iterative training. Correspondingly,
we design two three-step iterative differentiable networks to resolve
resultant optimization problems with theoretically guaranteed con-
vergence. Extensive experiments on six multi-view benchmark
datasets demonstrate that the proposed frameworks outperform
other state-of-the-art multi-view clustering methods.

Index Terms—Deep learning, multi-view clustering,
clustering, sparse representation, differentiable blocks.

Cco-

1. INTRODUCTION

LUSTERING is a technique used in machine learning [1],
C deep learning [2], [3], computer vision [4], [5], and related
fields. It aims to allocate data with different structures but sim-
ilar characteristics into identical groups. Numerous traditional
algorithms have been extensively utilized in clustering, such as
k-means, spectral clustering, and non-negative matrix factor-
ization. Many emerging one-sided clustering methods have also
been proposed and implemented. For instance, self-supervised
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convolutional subspace clustering networks [6] have been com-
bined with a convolutional network, a self-indicting module,
and a spectral clustering method to form joint optimization
frameworks for clustering. Xu et al. [7] utilized dual autoencoder
networks to extract potential feature relationships to improve
clustering performance. A method for directly discovering clus-
ter groups in samples was also presented in [8].

However, most of the above algorithms exclusively consider
one-sided clustering, that is, clustering is performed only from
the sample or feature space, which is not applicable to many
scenarios [9], [10]. For example, clustering tasks involving term-
document matrices or user-item matrices need to consider the
dual relationship between samples and features. Co-clustering
is a precise approach that is developed for such situation. For
instance, based on non-negative matrix factorization, the method
of orthogonal non-negative matrix tri-factorization [11] has been
proposed for co-clustering. A new co-clustering bipartite graph
strategy [12] was developed with promising performance. The
bilateral k-means method [13] extended the one-sided algorithm
to co-clustering tasks.

All of the above methods are representative single-view
methods. Nevertheless, in large-scale real-world applications,
data originates from multifarious sources and multiple modal-
ities [14], [15]. These multi-view features are highly heteroge-
neous due to different information representations, making it
challenging to explore the consistency of these features [16],
[17]. The single-view clustering methods may fail to deal with
actual multimedia data scenarios. Hence, multi-view and mul-
timedia clustering tasks have become a focus of mainstream
research [18], [19] in recent years. For example, Xie et al. [20]
jointly learned multi-view correlations and local geometrical
structures in a unified tensor space and a view-specific self-
representation feature space, respectively. Yin et al. [21] pro-
posed a tensor construction method to organize multi-view ten-
sorial data, to which the tensor-tensor product could be applied.
Chen et al. [22] proposed a nonlinear method to learn the kernel
representation tensor and affinity matrix jointly. Although the
above methods maintain strong interpretability, they also have
the disadvantages of the fixed solution space and insufficient
data fitting abilities. Deep learning adopts back propagation and
gradient descent, which can be tuned end-to-end to solve the
above problems. Therefore, deep learning has been incorporated
into multi-view clustering tasks and become a research hotspot
in multimedia tasks.

A common characteristic of most existing deep multi-view
clustering methods is that they adopt networks to learn a com-
prehensive latent representation from various features [23]. For
example, deep canonically correlated autoencoders [24], [25]
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Fig. 1.

An overview of the proposed frameworks. After initialization, we obtain a consistent collaborative representation G by DBMC and EDBMC block-wise

networks, where U; corresponds to the fully connected layers. The ST represents a soft-threshold function, differing between DBMC and EDBMC. The proximal
operators and differentiable proximal operators are parameterized by 61 and 02, respectively. Finally, we obtain the clustering results according to the consistent

collaborative representation G.

proposed to maximize the canonical correlation of the features,
thereby learning a two-view low-dimensional representation.
Deep generalized canonical correlation analysis (DGCCA) [26]
searched for the interconnectedness among multi-view features
to explore a complete potential representation. Gao et al. [27]
extended deep canonically correlated autoencoders to those
combining relevant constraints with a self-expression layer and
made full use of the information among the multi-view features.
The above four networks utilized deep learning and canonical
correlation analysis to learn a unified latent correlation rep-
resentation to perform multi-view clustering. Moreover, Zhao
etal. [28] used deep networks by simulating non-negative matrix
factorization to excavate common latent feature semantics. Au-
toencoder in autoencoder networks [29] integrated autoencoder
and degradation networks to project multiple sample spaces
onto a shared subspace. Multi-view spectral clustering networks
(MvSCN) [30] aimed to fuse the spectral clustering method
into deep networks to explore potential representations of local
invariance. The above methods have demonstrated the feasibility
and effectiveness of multi-view clustering methods on deep
networks to obtain multi-view consistent representations.

Although the above methods have showed encouraging per-
formance, some problems still remain to be solved. First, some
existing multi-view clustering networks are difficult to be inter-
pretable. We may need to construct deep networks based on op-
timization methods and make the networks more interpretable.
Second, most methods do not consider the dual relationship
between the multi-view feature space and its sample space,
which is an associative structure between samples and features.
Finally, limited research is devoted to exploring the sparsity
of the dual space and the non-linear data relationship using
learnable and interpretable deep networks.

To solve the above problems, we propose a network frame-
work for multi-view clustering called DBMC and an extension
named EDBMC. DBMC and EDBMC are equivalent deep net-
works of proposed optimizing loss functions, which provides

favorable theoretical interpretability. The introduction of dif-
ferentiable learnable blocks allows the corresponding solutions
to be implicitly learned by an end-to-end way in the network.
Furthermore, the proposed networks consider a multi-view dual
space relationship and keep the corresponding space sparse
to learn an interpretable and consistent collaborative represen-
tation. The overall framework is shown in Fig. 1. The main
contributions of this paper can be summarized as follows:

e DBMC and EDBMC are transformed into deep differ-
entiable network frameworks on differentiable iterative
optimization of the proposed objective loss functions.

e DBMC and EDBMC learn interpretable and consistent
collaborative representations from multi-view features and
maintain sparsity in the dual space of features and samples.

® The performance of the proposed frameworks is compared
with that of nine state-of-the-art multi-view clustering
methods to demonstrate their superiority.

The rest of the paper is structured as follows. In Section II, we
review related research on multi-view co-clustering and sparse
representation. In Section III, DBMC and EDBMC methods
are proposed and their convergences are verified. Section IV
describes extensive experiments with real-world datasets to val-
idate the clustering performance of the proposed frameworks.
Finally, the paper is concluded in Section V.

II. RELATED WORKS

In this section, we present the progress about multi-view co-
clustering and sparse representation.

A. Multi-View Co-Clustering

In many real-world applications, data originates from various
sources. For instance, information retrieval is supported by di-
verse languages with descriptions or webpages containing both
contents and citation linkages [31]. Understanding how to ex-
ploit the complementarity and consistency in multi-view data has
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become a popular research direction. Multi-view co-clustering is
based on the duality between samples and multi-view features.
Samples are grouped according to their feature distributions,
and features are grouped by building on their distributions with
data points. Unlike one-sided multi-view clustering, multi-view
co-clustering captures the immediate effects of both in the
sample and feature space simultaneously. Moreover, multi-view
co-clustering is a method of grouping two types of entities
simultaneously by the similarities of their pairwise interactions.
Furthermore, multi-view co-clustering methods have captured
increasing attention in recent years. For example, [32] added the
maximum entropy into the loss function to control the weights of
different views. An auto-weighted method [33] was introduced
into multi-view co-clustering to assign the weight of each view
feature. Moreover, Hu et al. [34] proposed a dynamic multi-view
co-clustering algorithm with mutual information. These works
all consider the spatial structure of the feature and sample space
into multi-view clustering tasks.

B. Sparse Representation

Sparse representation can handle redundant information to
maintain the processed features more interpretable [35]. Several
algorithms with such characteristics have already been proposed.
For instance, Beck ef al. [36] designed a fast iterative shrinkage
and thresholding algorithm (ISTA), which solved linear sparse
inverse problems. Learned ISTA (LISTA) [37] was an exten-
sion of ISTA that combined sparse representation with neural
networks. Recently, differentiable deep neural networks [38]
possessed the same conceptual peculiarities as above and have
been applied to compressive sensing reconstruction models.
Chen et al. [39] introduced a differentiable weighted sparse
structure and obtained a theoretical linear convergence.

We can observe that the above algorithms employ the idea
of sparse representation and have achieved encouraging per-
formance in their respective fields. Next, we focus on ISTA
algorithm and prepare the way for the proposed frameworks.
The loss function of solving sparse coding W in the original
ISTA is described as

1 2
r%n§||X—DdW||2+aHW||1. (1)

Problem (1) is discussed in [37], which can be solved by the
following iterative updating rules

1
U= Tp_1— EVE (x-1), 7 = Proxa (u). (2)

Herein, ISTA defines a constant L, which is an upper bound of
the largest eigenvalue of D2 D,. VL (1) of (1) is computed
as

VL (W) =D} (DysW - X). (3)
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TABLE I
SYMBOLIC NORMALIZATION NOTATIONS AND DESCRIPTIONS

Notations I Descriptions
_ v € v is the multi-view training data from the v-th view.
XY, X, € R™X4v is the multi-vi ining data from the v-th vi
G I G € R™*“1 s a consistent collaborative representation.
S H S € R1*¢2 js a shared coefficient matrix.
_ v € R% is the feature indicator matrix from the v-th view.
Fo}Y F, € Rvxe2 s the fi indi ix fi he v-th vi
Ly || LY € R"*™ is a graph Laplacian matrix of the v-th sample space.
L U; I A unit matrix and a layer learned by deep networks.
Proxy(-) I A proximal operator, where 6 is a threshold.
Eo) () o)) | Non-linear functions parameterized by 61, and 2.

(3) can be substituted with (2) to obtain the algorithmic forms
as

1
Wk, = PI‘OX(a/L) <Wk_1 - ZD(T; (dek—l - X))

1 1
= Prox(, 1) <<I - LDZ[Dd) W1 + LDdTX) :

4)
Hence, these variables in (4) are interpreted as
Lo Lo
D, = fDd’S =1- fDdDd’
[Prox,(V)];; = sign (Vi) (IVij| —0i5) - ®)

(5) is incorporated into (4) to obtain the canonical form of the
LISTA algorithm, calculated as

Wi = Proxp (D.X + SWy_1). 6)

The above formula shows that the sparse solution W, can be
obtained by training learnable layers {D.,S} and proximal
operator Proxy(-). The LISTA algorithm provides a direction
for transforming existing sparsity based learning methods into
equivalent deep networks.

III. PROBLEM FORMULATION AND OPTIMIZATION

In this section, we start with a primitive loss function, propose
a loss function for DBMC, and provide an optimization plan. In
advance, we replace two proximal steps in DBMC to propose
an elevated DBMC. First, we define the required notations in
Table I.

A. Problem Formulation

Denote given data be X & R™*4 where n is the number
of samples, and d is the number of features. The clustering
problem is to divide data points into ¢ clusters {C;}5_;. So
as to convert discrete k-means problems into continuous ones,
the cluster indicator matrix G € R™*¢ are added to eventually
obtain clustering results, where G;; = % If sample x; per-
tains to cluster C';, and G;; = 0 otherwise. It can be validated
that GT'G = I. Based on the above analysis, the optimization
problem is expressed analogously as

1 2 T
— — t. > =
min 5 |X - GS[} .5 G >0,67G =L ()
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where S € R¢*? is a shared coefficient matrix. The above loss
function only considers clustering from the data side G. The col-
laborative clustering problem is to group the data G and features
F simultaneously. Analogously, the single-view co-clustering
problem can be written as

glsmF* X~ GSF[; .

st.G>0,F>0,GI'G=LFIF=1, (®)

where G € R™*“t and F € R%*°2 are a consistent collaborative
representation and a feature indicator matrix, and S € R %2 ig
ashared coefficient matrix. The collaborative clustering problem
is a prolongation of k-means. However, the aforementioned
clustering problem does not preserve the topological structure
of the sample space. Accordingly, the term Lg is introduced to
learn a local geometric structure of the input training samples.
Moreover, the optimization problem does not consider the sparse
representation in the space of samples and features. Although the
orthogonal constraints on G and F already have high sparsity,
the sparse norm can enhance this property, so that some rows of
G and F can be equal to zero. Therefore, two terms are added
to learn a sparse representation, expressed as

Join, 5 ||x GSFT|% + a Te(GTLgG) + 8 |F|,
+7G|1,5t. G >0,F>0,G'G=LF'F =1

©))
Considering the above single-view idea as a multi-view one,
multi-view co-clustering obtains the consistent collaborative
representation G, the global coefficient matrix S, and the
single-view feature indicator matrix F',,. Thus, the multi-view
co-clustering problem is extended as

. 1 V T2 Tt v
cslin, 3 ;(Hxv — GSF! |, +aTr(G"LLG)

PO ETE, R

0
+1lle"e ~ 1 + <Gl
st G>0,F,>0,1<v<V.

(10)
Problem (10) can be resolved into three sub-problems and trans-
formed into the corresponding sub-block networks. G and S
are the global optimization variables learned from multi-view
features, and F, is an optimization variable obtained from
the single-view data. L, = D¢ — P¢ is a graph Laplacian
matrix, constructed from a pre-chosen pairwise similarity matrix
P{ = k(X,,X,), where (-, -) is the RBF kernel function.

B. Problem Optimization and Its Block Network

Step 1. Minimize the objective function over G with fixed S
and F., values from Problem (10): Optimizing Problem (10)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

with respect to G is equivalent to optimizing

,
1 )
min 5 ; (X, - GSFI|} + aTr (GTL&G))

Jrg||GTG71H§;+C||GH1,S.LG20. (11)

Consequently, based on the analysis in Subsection II-B, the
sub-problem (11) is differentiable without ¢;-norm. The La-
grange function £; ignoring ¢;-norm is constructed as

g 2
£1(G) = min 5 ;(HXU — GSF!||,,

+aTr(G'LEG)) f||GTG—I||F, s.t. G > 0.
(12)

Taking derivative of £ with respect to G, a single-view gradient
of VL1 (G) is computed as

oLy

G = ( - X,F,8" + GSF?F,ST + oL4G

+5<GgTG_G>>.

While a solving strategy is applied to non-smooth ¢; -regularized
problems, the process of calculating G is written as

13)

G = Prox¢/1, (G - i( - X,F,8" + GSF!F,s”
Ly
+aLgG+4(GGTG - G) ))

1
X@F sT — L—GSFTF”ST
1

= P’I‘OX(C/L1 (G —|—

v 4 T
EL G- 1-(GG"G - G))

1 1
= Prox/z,) <<I - MSFUTFUST) G+ EX“F“ST

g T
L1L oG I (GG G G)) .

(14)
(14) illustrates to calculate the process of iterative form G in
a single-view case. Here, we employ a learnable layer U; to
represent (I — L%SF{FUST). Then, the network of updating
G, as a multi-view case can be rewritten as

1%
1 1 v
Gy = Prox(/1,) (V S (Ulel + W}g}?,i_)ls{,1
v=1 1
—L.LG 0 G,_1Gl |G G
k-1 — k-1Gp 1 Gp—1— G .
Lgv) G Lgv) k-1

(15)
The consistent collaborative representation G can be obtained
in (15). The proximal operator guarantees the constraint G > 0.

L") is the Frobenius norm of Sj,_1 (F,(;i)l)T
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Step 2. Minimize the objective function over ¥, with fixed S
and G values from Problem (10): Optimizing Problem (10) with
respect to F,, is equivalent to optimizing

1 2 f 2
~( [|X, — GSF} ~||FIF, -1
{FI?}@IQ(H ollr + 5 7

+q/||FUH1>7 stF, > 0. (16)

The Lagrange function £4 without ¢;-norm is constructed as

min

Lo(F,) =
2(Fu) (F)Y,

1 2
L. — G

153 2
+5 |F7F, —1||,),stF, > 0. (17)

Taking derivative of Lo with respect to F',,, we obtain a single-
view gradient of VLo (F,),

0Ls
IF,

(18)
With the above analysis, the single-view sub-problem (16) is
analogously solved as

F, = Prox(,/r,) (FU — —XZGS +F,STGTGS

1
E(
+ B(F,FIF, — Fv)))

1 T 1 THT
— Prox(,,L,) <F + X6 - - F.STGTGS

B T
- ~(F,FTF, - F
LQ( vt o v 'u)
= Prox, /r, IfiSTGTGS F +ixTGs
("// 2) L2 L2 v
_ B (FUFfFU—FU))
Lo
(19)

The network structure of the v-th view F,(C”)

written as

updating process is

1
—XTGk_1Sk_
L2vk1k1

6 v v v v
- f2 F/(ff)l(Fgcf)l)TFgcf)l - Fl(gj1 ’

where Uy = (I — L%STGTGS), and L, is the Frobenius norm
of Gi_1Sk_1. The proximal operator guarantees the constraint
F,>0.

Step 3. Minimize the objective function over S with fixed F,,
and G values from Problem (10): Optimizing Problem (10) with
respect to S is equivalent to optimizing

1
min 5 3" ([|X, - GSF ;) -
v=1

Fi) = Prox(,L,) <U2F;(f)1 +

(20)

2n

= ( ~-X'GS +F,STG'GS + (FFTF — F) ) .

4627

Let L3 represent the sub-problem (21), and take derivative for
L3 to obtain gradient of V.L3(S) as

%

23

v=1

oL,

S (22)

(FTFSTGTG - FTXZG)

Let the derivative be equal to zero, the network form of S
updating process is formulated as

%

1 - v v) () \—
o= 3 (161G G X r R
v=1
(23)
Equations (15), (20), and (23) are the core of the entire
network. It can be seen that DBMC considers both multi-view
co-clustering and differentiable sparse coding to learn a consis-

tent collaborative representation.

C. Network Structures of DBMC and EDBMC

The specific programming implementation is that we generate
G from optimizing and training Problem (10) corresponding to
differentiable block networks, and then G is utilized to instruct
the final clustering results. In the above-mentioned learnable
block networks, each block is differentiable and reusable. The
one-block network structure of DBMC is summarized as

G :PI'OX(C/Ll) <‘1/ Zq‘;/:l (Ulel—’_L;”)XvFl(j_)lsgl

Gio1— (Gk 1GL |G 1— Gy 1)))

FL) Prox(v/L2)<U2Fk 1T T XTGk 1Sk-1

L2< 5:)1( (0)1)TF ng)1>>7

Sk = % Zz‘;/:1 ((Ggle—1)1G£1va§:)1

Fi)) )
(24)

where © = {(U1),, (Uz), }_, isalearnable set. The i-th block
computes the output with (24). Algorithm 1 describes the main
procedures of the proposed method DBMC.

In the spirit of learning-based optimization, we propose an
enhanced learnable network named elevated DBMC (EDBMC).
Specifically, we retain the updating rule for Sy, and replace two
proximal steps in (24) with differentiable proximal operators,
summarized as

(03 v
Tl T Lg

(v)
k-1

( (71)

X, F" ST

_ v 1
Gy 91)k< Z ( Gk—lJrF

1

« ~ 1
—WLEGICA @ (Gk 1GT Gy — Gy 1)))
1 1

(25)
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Block Structure

The k-th Block

v =+

— (1/L1)<")—I

XOFYST_,

L LGy + 61 (61) Gt — Gie))  —— ((“"‘5)/"1)(")

DBMC Balance
Welght

EDBMC (egl)k :

vk® +

KN GhySk-1 — 1L, —I

Fig. 2.

p——>p J (V)
\- RO R, s

ﬁ<pmm

EDBMC (174, Fi

One-block structure of DBMC and EDBMC.

Algorithm 1: Differentiable Bi-Sparse Multi-View Co-
Clustering (DBMC).

Algorithm 2: Elevated Differentiable Bi-Sparse Multi-View
Co-Clustering (EDBMC).

Input: Multi-view features {X,}Y_,, cluster numbers c;
and co, regularization parameters «, (3, v, d and ¢,
number of blocks ¢, training epochs e, and learning rate
lr.

Output: Consistent collaborative representation G.

1: Initialize G, S, F,, learnable parameters ®, and graph
Laplacian matrices {L&
while not convergent do

fork=1—tdo
Compute S by the (23);
Update F',, by the (20);
Update G by the (15);

end for

Update ® with back propagation;

9: Update counter k = k + 1;

10:  end while

11: return Consistent collaborative representation G.

vl;

0 o 1
FY =1,), (UzFé)l + EXTGk 1Sk-1 — L%
y (Fm,mw,@l : F;:n)),

1%
Z < Gk 1Gk 1) IGk 1 X0 F(U) 1 (F, (U) (v) 1) >,
B 27)

(26)

Sk

< \

where © = {(Uy),, (Us),, (61),, (02), YK, is the learnable
set. In addition, &g, )(-) and 7,)(-) are differentiable proximal
operators parameterized by the self-learning parameters ¢; and
05, consisting of some non-linear functions (e.g. RELU) to

replace the two proximal steps of entering manually parameters
v and (. DMBC and EDMBC are comprised of ¢ differentiable

Input: Multi-view features {X, }V_;, cluster numbers c;
and co, regularization parameters «, 3, and ¢, number of
blocks ¢, training epochs e, and learning rate [r.

Output: Consistent collaborative representation G.

1: Initialize G, S, F,, learnable parameters ®, and graph
Laplacian matrices {L& }Y_;;

2:  while not convergent do

3: fork=1—tdo

4. Compute S by the (27);

5: Update ];5‘\1, by the (26);

6: Update G by the (25);

7: end for

8: Update ® with back propagation;
9: Update counter k = k + 1;

10:  end while
11: return Consistent collaborative representation G.

blocks, which contain the learnable parameters ® and ©. One-
block network structure of the proposed DBMC and EDBMC is
summarized in Fig. 2, and Algorithm 2 illustrates the proposed
method in detail. The training objective function of the DBMC
and EDBMC networks computes each view of reconstruction
loss for (X)), = GSk(FL);, or GkSk(FT) in each epoch,
represented as

T (X, (X, (X3)kll7-

)k: ©;©) ZIIX (28)

D. Computational Complexity Analysis

In this subsection, we summarize and analyze the convergence
and computational complexity of the networks. Problem (10) is
not a resultant convex problem of all variables, so we design two
three-step iterative networks to resolve the joint optimization
problem (i.e., Algorithm 1). If each sub-problem is convergent,
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the synthesis problem is also convergent. The convergence of
each sub-problem is shown as follows.

Update S. Sub-problem (21) is a convex function, and we
provide a closed-form solution in (23).

Update G and F',,. Sub-problems (11) and (16) have the same
optimization sub-problem form. In general, it is difficult to ana-
lyze whether learnable layers of U, used in Algorithms 1-2 may
improve upon the fixed parameter methods. However, a number
of studies have proved the effectiveness of this strategy [40],
[41]. The proximal step theories of ¢;-norm regularized prob-
lems [36] and approximate replacements [37], [39] guarantee
the correctness and convergence of replacements. According
to the theoretical analysis in [36], sub-problems (11) and (16)
can have an analytical solution by using the proximal steps.
As stated by [37], [39], using the learnable layers instead of
fixed parameters can obtain the iterative solution. Therefore,
sub-problems (11) and (16) can guarantee the convergence.
Moreover, the time complexity of the proposed framework is
O(YY_, (max(n?d,,d®) + n®)) foreach block network, where
n is the number of samples, and d,, is the number of the v-th
view feature.

IV. EXPERIMENT AND STUDY

In this section, we describe a comprehensive experimental
evaluation of six classical multi-view datasets. First, the datasets,
evaluation indicators, and evaluation methods are introduced.
Second, we present the overall performance compared with
several state-of-the-art multi-view methods. Third, we perform
ablation study experiments and analyze the parameter sensitivity
of the related parameters. Finally, we make conclusions from
the experimental analyses. The proposed frameworks are im-
plemented with Pytorch on a standard Ubuntu-16.04 operating
system with four NVIDIA Tesla P100 GPUs. In brief, we build
t-block differentiable networks with batch normalization layers,
fully connected layers, and non-linear functions.

A. Datasets

Six publicly available datasets are used to verify the effective-
ness of the proposed methods, including ALOI, Caltech101-7,
Caltech101-20, Notting-Hill, NUS-WIDE, and WebKB-texas.

ALOI is derived from the Amsterdam Library of Object
Images,! which consists of 1079 images of 10 small objects.
Each image is represented by four types of features: RGB, HSV,
color correlogram, and Haralick features.

Caltech101-7 and Caltech101-20 are based on the Caltech-
1012 dataset, and contain 1474 images in seven classes and 2386
images in 20 classes, respectively. Each image is represented by
six types of features: Gabor, wavelet moments, centrist, HoG,
GIST, and LBP.

Notting-Hill is a video-based dataset of face images collected
from the movie Notting-Hill. It contains 4660 face images of the
five main actors in 76 tracks. Intensity, LBP, and Gabor features
are extracted for representations.

Uhttps://elki.dbs.ifi.lmu.de/wiki/DataSets/MultiView
Zhttps://www.vision.caltech.edu/Image_Datasets/Caltech101
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TABLE II
A BRIEF DESCRIPTION OF THE TESTED DATESETS

Datasets || # Samples | # Views | # Total Features | # Classes

ALOL || 1079 | 4 | 218 |10
Caltechl01-7 || 1474 | 6 | 3,766 |7
Caltech101-20 | 238 | 6 | 3766 | 20
Notting-Hill || 4660 | 3 | 12054 | 5
NUS-WIDE || 1600 | 6 | L34 | 8
WebKB-texas || 187 | 2 | 1,890 | 5

NUS-WIDE is selected from the NUS-WIDE-Object? dataset
and contains 1600 images of the first eight classes. Each im-
age is represented by six types of features: color histogram,
color correlogram, edge direction histogram, wavelet moments,
block-wise color moments, and SIFT.

WebKB-texas is selected from WebKB* and contains web-
pages collected from one of four universities: Cornell, Texas,
Washington, and Wisconsin. The webpages are distributed over
five clusters and described by two views: content and citation.

All tested datasets are derived from real-world applications,
ranging from object images to web images. Details of the num-
bers of samples, views, total features, and classes are presented
in Table II.

B. Experimental Setup

In this subsection, to validate the effectiveness of the pro-
posed methods, several state-of-the-art multi-view clustering
methods are used for comparison: k-means, MVKSC [42],
MSC-IAS [43], MCGC [44], BMVC[45], ETMLSC[10], DMF-
MVC [28], DGCCA [26], and MvSCN [30].

MVKSC: Multi-view kernel spectral clustering was formu-
lated as a weighted kernel canonical correlation analysis in a
primal-dual typical optimization method of least squares support
vector machines.

MSC-IAS: Multi-view subspace clustering with intactness-
aware similarity adopted Hilbert-Schmidt Independence to learn
a space by encoding complementary information.

MCGC: Multi-view consensus graph clustering learned an
exact consensus graph by minimizing the imparity among dif-
ferent views and constraining the rank of the Laplacian matrix.

BMVC: Binary multi-view clustering was based on a joint
learning framework that simultaneously addressed compact col-
laborative discrete representation and binary structure learning.

ETLMSC: Essential tensor learning for multi-view spectral
clustering proposed a novel essential tensor learning method for
Markov chain based spectral clustering.

Moreover, some parameters of the compared methods should
be clarified in advance. All methods are tuned using their default
settings if feasible. For other open hyper-parameters, we adopt
the following settings. For k-means, all parameters are run as
defaults. For MVKSC, the kernel type uniformly selects the RBF

3https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/
nuswide/NUS-WIDE . html
“https://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo- 1 1/www/wwkb/
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TABLE III
EXPERIMENTAL PARAMETER SETTINGS OF DBMC AND EDBMC, WHERE «, (3,
7, 8, AND ¢ ARE HYPER-PARAMETERS

Datasets \ Parameter Name || Block | Learning Rate | Epoch | o | 8 | v | & | ¢
ALOI DBMC 11 10-4 45 1073 | 1073 | 1073 | 1073 | 1072
EDBMC 9 10-4 75 1073 | 1073 - 1073 -
. DBMC 6 104 65 1073 | 1072 | 1073 | 1073 | 1073
Caliechl01-7 ‘ EDBMC H 5 ‘ 1073 ‘ 10 ‘ 100 10°% | - 10| -
DBMC 2 104 40 1073 | 1073 | 107% | 107% | 1072
2 c| -2 P

Caliech101-20 | gpyie H 3 ‘ 1073 ‘ 15 ‘ 1078 [ 103 | - 103 | -
Notting-Hill DBMC 2 1073 10 1073 | 1073 | 1073 | 1073 | 1073
& EDBMC 4 1073 15 1073 | 1073 - 1073 -
DBMC 2 10-4 45 1073 | 1073 | 1073 | 1072 | 1072

NUS-WIDE ‘ EDBMC H 4 ‘ 104 ‘ 15 ‘ 1072 | 107 - 102 -
. | DBMC 3 10-4 30 [ 1073 ] 1072 | 1073 | 107 | 1073
WebKB-texas | pppyic H 6 ‘ 1073 ‘ 5 ‘ 10781078 | - 10| -

kernel, and the kernel parameters of ¢ and d are tuned as [1, 10].
For instance, the number of the nearest neighbors for MSC-IAS
is fixed as 3, and the intact space dimension is fixed as 500. For
MCGGC, the regularization parameter (3 is tuned as 5 = 0.1. For
BMVC, we randomly generate 10% training multi-view data
points for the non-linear anchor embedding. For ETLMSC, the
random seed is set to 100. For DMF-MVC, the number of the
nearest neighbors k is fixed at 5. For DGCCA, the number of
hidden layers is set to 128. For MvSCN, the total number of pairs
for Siamese networks is set to 600 000. Experimental parameter
settings of the proposed networks are summarized in Table III.
Particularly, cluster numbers c¢; and ¢, are set as the number of
clusters in advance, respectively.

C. Evaluation Metrics

Several evaluation indicators employed in the experiments
of the proposed networks are introduced. We compare DBMC
and EDBMC with several state-of-the-art multi-view clustering
methods. Seven well-known clustering evaluation metrics are
applied to the experiments: clustering accuracy (ACC), nor-
malized mutual information (NMI), Purity, adjusted rand index
(ARI), F-score, Precision, and Recall. The higher the values of
these metrics are, the better the performance is. All experiments
of the proposed frameworks are run ten times, with means and
standard deviations recorded as the final results.

D. Overall Performance

In this subsection, comprehensive experiments are described
to evaluate different multi-view clustering methods. The exper-
imental results verify the superiority of the proposed frame-
work on six real-world multi-view datasets with nine compared
algorithms and networks. From Table IV, we can obtain the
following observations. On one hand, the bi-sparse multi-view
co-clustering provides better performance than other state-of-
the-art multi-view clustering algorithms on most tested datasets.
The main reason is that the bi-sparse co-clustering keeps the
space of samples and features sparse simultaneously. Further-
more, DBMC of parameter self-learning is more progressive
in learning an effective consistent collaborative representation.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

In general, adopting deep networks to learn a latent repre-
sentation is often more satisfactory than using shallow mod-
els. Specifically, DBMC and EDBMC achieve better perfor-
mance than the other state-of-the-art multi-view algorithms on
most tested datasets. The proposed frameworks exceed other
algorithms significantly on all datasets in terms of ACC. On
the other hand, the proposed frameworks demonstrate their
superiority over other state-of-the-art methods. Notably, the
advantage of the proposed frameworks is considerable on all
six datasets. DBMC and EDBMC significantly outperform the
sub-problem optimization models (such as BMVC, MCGC) and
deep learning networks (such as MvSCN) in most indicators
on all datasets. It can also be observed that the performance
of EDBMC is better than that of DBMC, demonstrating the
effectiveness of the designed learnable parameters. These re-
sults validate the feasibility and effectiveness of the proposed
methods.

E. Ablation Study

In this subsection, we describe ablation experiments on the
proposed models. The detailed results of the ablation studies
are shown in Table V, and the parameters used here are the
same as those in Table III. It can be observed that the methods
that consider the topology learning matrices {L% }¥_,, bi-sparse
strategy, and orthogonality constraints have better performance
than none of these terms are considered, while considering
bi-sparse strategy performs better than only considering the
topology learning and orthogonality constraints. Moreover, the
performance is improved on most datasets when pairwise strate-
gies are combined. In particular, the combination of the bi-sparse
strategy and orthogonality constraints is more effective than
only considering bi-sparse strategy or orthogonality constraints,
which proves the necessity and effectiveness of adding the two
constraints in the proposed models. When the three methods
are combined simultaneously, an advantageous synergetic rep-
resentation is learned, which improves the multi-view clustering
performance. Furthermore, it can be seen that EDBMC automat-
ically learns a better threshold. This value makes DBMC learn
a consistent representation that is in line with the characteristics
of the samples.

F. Parameter Sensitivity

In this subsection, the parameter sensitivity of the proposed
frameworks is analyzed to determine the validity of the parame-
ter settings. DBMC shows the parameters of ALOI, Caltech101-
7, and Caltech101-20, while EDBMC selects the related parame-
ters of Notting-Hill, NUS-WIDE, and WebKB-texas for display.
Notice that all parameter sensitivity analyses are carried out
in the settings given in Table III. The numbers of blocks and
epochs affecting on the six datasets are reported in Figs. 3—4.
The other parameters are fixed to the values while tuning the
numbers of blocks and epochs. We select ACC, NMI, ARI, and
F-score as evaluation metrics. The numbers of blocks and epochs
are searched by the grid {1,2,...,14} and {5, 10,...,85},
respectively. It can be observed that the overall performance
increases when the number of blocks is less than 12. This enables
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Fig. 3. Parameter sensitivity analysis of DBMC and EDBMC in terms of block numbers on six datasets.
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Fig. 4. Parameter sensitivity analysis of DBMC and EDBMC in terms of epoch numbers on six datasets.
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TABLE IV
CLUSTERING PERFORMANCE OF ALL COMPARED MULTI-VIEW CLUSTERING METHODS, WHERE THE BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED IN
BOLD AND UNDERLINED (MEAN% AND STANDARD DEVIATION%). DMF-MVC RUNNING ON ALOI ENCOUNTERS SVD PROBLEMS

Datasets \ Methods || k-means | MVKSC | MSC-IAS | MCGC | BMVC | ETMLSC | DMF-MVC | DGCCA | MvSCN | DBMC | EDBMC
ACC 475 (3.3) | 604 (0.0) | 59.4 (4.3) | 524 (0.0) | 59.6 (0.0) | 72.2 (5.3) - 57.3 (1.2) | 56.0 (2.5) | 68.8 (3.4) | 73.7 (2.9)
NMI 473 (2.1) | 584 (0.0) | 70.1 (1.8) | 52.5(0.0) | 54.7 (0.0) | 73.5 2.1) - 484 (0.4) | 602 (2.7) | 71.7 (1.4) | 74.8 (1.4)
Purity 48.6 (2.3) | 64.4 (0.0) | 67.6 (2.6) | 56.5(0.0) | 60.0 (0.0) | 72.2 (3.6) - 59.9 (12) | 57.5 (2.5) | 69.0 3.4) | 73.9 (3.9)
ALOI ARI 33.0 (2.9) | 43.8(0.0) | 532 (3.5) | 25.9 (0.0) | 40.8 (0.0) | 61.1 (4.8) - 347 (1.0) | 40.9 3.1) | 56.3 (3.9) | 62.9 (3.0)
F-score 41.1 2.4) | 49.9 (0.0) | 585 (2.9) | 37.0 (0.0) | 47.4 (0.0) | 68.8 (4.2) - 46.0 (0.8) | 57.5(2.3) | 652 (2.2) | 70.7 (1.6)
Precision || 34.0 (2.9) | 45.6 (0.0) | 51.5(5.0) | 24.4 (0.0) | 423 (0.0) | 63.5 (6.5) - 427 (0.7) | 49.0 (2.5) | 58.7 3.0) | 65.8 (2.6)
Recall 52.1(0.3) | 55.0(0.0) | 68.2(2.8) | 76.1 (0.0) | 53.8 (0.0) | 75.4 (1.5) - 49.9 (1.6) | 69.8 (1.6) | 73.5 (2.7) | 76.4 (1.0)
ACC 49.6 (5.8) | 34.2(0.0) | 713 (43) | 53.6 (0.0) | 359 (1.2) | 39.4 (4.2) | 563 (0.3) | 76.3 (0.7) | 58.1 (0.0) | 82.1 (0.3) | 84.3 (0.3)
NMI 327 (1.9) | 307 (0.0) | 49.5 (3.8) | 42.9 (0.0) | 36.1 (2.0) | 374 (0.9) | 350 (1.0) | 41.2(2.6) | 57.7 (0.0) | 53.4 (1.5) | 63.5 (1.1)
Purity 80.4 (1.4) | 783 (0.0) | 84.7 (0.0) | 83.5(0.0) | 833 (1.5 | 81.9 (1.6) | 81.5(0.8) | 763 (0.7) | 86.8 (0.0) | 82.2 (0.4) | 85.5 (0.6)
Caltech101-7 ARI 302 (4.1) | 23.1(0.0) | 52.1 (6.7) | 38.4(0.0) | 23.1(2.1) | 30.0 24) | 31.3(0.4) | 51.1(1.9) | 44.7 (0.0) | 66.9 (3.8) | 80.7 (1.6)
F-score 49.6 (4.5) | 39.5(0.0) | 69.1 4.8) | 56.5(0.0) | 40.6 (1.3) | 454 (2.3) | 52.1(02) | 70.8 (1.3) | 66.0 (0.0) | 77.6 (0.6) | 815 (0.8)
Precision || 68.6 (1.5) | 71.5(0.0) | 75.1 (3.5) | 73.9 (0.0) | 68.8 (3.6) | 79.8 (1.8) | 66.2 (0.3) | 61.7 (1.2) | 82.0 (0.0) | 69.5 (1.8) | 77.4 (1.2)
Recall 39.0 (5.2) | 273 (0.0) | 64.0 (5.9) | 45.8 (0.0) | 28.8 (0.7) | 31.7 2.0) | 43.0 (0.2) | 83.0 (1.4) | 552 (0.0) | 88.0 (2.6) | 86.2 (2.3)
ACC 313 (25) | 495(0.0) | 41.9 2.7) | 629 (0.0) | 37.9 (0.7) | 455 (4.1) | 54.8 (0.9) | 59.1 (0.5) | 38.3 (0.8) | 65.7 (0.8) | 68.3 (0.4)
NMI 345 (1.1) | 182(0.0) | 36.8 (2.5) | 54.6 (0.0) | 30.3 (0.3) | 432 (1.4) | 53.0 (0.5) | 41.1 (0.9) | 49.5 (0.8) | 47.9 (I.1) | 54.7 (0.6)
Purity 59.0 (1.0) | 49.5(0.0) | 56.6 (2.0) | 644 (0.0) | 59.5 (0.3) | 554 (2.8) | 63.2(0.5) | 59.1 (0.5) | 68.3 (0.4) | 65.8 (0.7) | 68.8 (0.5)
Caltech101-20 ARI 189 (1.8) | 254 (0.0) | 169 (3.0) | 36.6 (0.0) | 32.3(0.7) | 33.6 (2.7) | 39.8(1.3) | 553 (1.9) | 25.8 (0.5) | 60.8 (2.9) | 69.0 (2.7)
F-score 272 (1.8) | 43.7(0.0) | 33.7 (2.1) | 49.1 (0.0) | 39.0 (0.7) | 39.0 (2.6) | 47.5(1.0) | 51.1 (0.6) | 39.5 (0.1) | 55.3 (0.8) | 60.2 (0.5)
Precision || 43.0 (2.6) | 28.9 (0.0) | 27.3 (2.5) | 40.4 (0.0) | 60.4 (3.7) | 26.0 (2.0) | 17.0 (0.0) | 53.5(0.0) | 58.1 (0.6) | 49.5 (1.5) | 55.7 (1.4)
Recall 19.9 (1.5) | 33.6 (0.0) | 442 (3.7) | 62.6 (0.0) | 28.2(0.6) | 58.1 (3.4) | 39.3(1.3) | 64.0 (1.7) | 29.9 (0.0) | 62.8 (1.0) | 65.6 (1.4)
ACC 63.7 (0.7) | 655 (11.8) | 69.3 (0.0) | 52.3 (0.0) | 69.6 (0.0) | 80.2 (2.6) | 73.8 (0.0) | 753 (3.8) | 71.0 (0.0) | 78.1 (4.1) | 82.4 (4.1)
NMI 58.0 (49) | 51.2(10.1) | 63.7 (0.0) | 60.1 (0.0) | 57.1 (0.0) | 69.8 (1.7) | 65.0 (0.0) | 61.2(2.6) | 63.3(0.0) | 653 (1.6) | 71.7 (2.2)
Purity 70.1 (5.6) | 68.1 (10.3) | 79.0 (0.0) | 69.0 (0.0) | 71.8 (0.0) | 832 (2.6) | 78.8 (0.0) | 75.7 (3.9) | 71.3 (0.0) | 78.6 (4.2) | 86.0 (4.1)
Notting-Hill ARI 49.7 (6.9) | 49.3 (14.4) | 56.6 (0.0) | 41.3 (0.0) | 52.1 (0.1) | 721 2.1) | 60.1 (0.0) | 56.8 (0.4) | 59.6 (0.0) | 66.0 (3.4) | 73.0 (2.8)
F-score 61.7 (48) | 62.1(9.8) | 659 (0.0) | 56.8 (0.0) | 623 (0.0) | 682 (2.0) | 69.0 (0.0) | 68.8 (2.3) | 68.1 (0.0) | 71.8 (1.6) | 76.9 (2.4)
Precision || 57.4 (7.1) | 56.4 (13.2) | 67.6 (0.0) | 47.1 (0.0) | 64.4 (0.0) | 64.0 (1.4) | 68.1 (0.0) | 623 (4.4) | 652 (0.0) | 66.3 (3.2) | 73.0 (4.9)
Recall 67.2(52) | 708 (72) | 64.2(0.0) | 71.7 (0.0) | 60.3 (0.0) | 93.9 (3.8) | 69.9 (0.0) | 77.2(0.1) | 71.2 (0.0) | 78.7 (2.3) | 81.4 (0.3)
ACC 320 (0.7) | 324 (1.8) | 31.1 (0.0) | 25.7 (0.0) | 252 (0.5) | 24.9 (1.2) | 15.6 (0.4) | 29.6 (0.0) | 302 (1.4) | 35.5(0.7) | 36.9 (0.8)
NMI 175 (0.7) | 14.4 (0.0) | 21.1 (0.6) | 14.7 (0.0) | 19.0 (0.4) | 12.8 (0.7) | 13.3(0.3) | 10.0 (0.3) | 20.1 (1.5) | 185 (1.2) | 18.9 (1.0)
Purity 344 (1.2) | 323 (0.0) | 37.0(1.2) | 293 (0.0) | 39.4 (0.7) | 26.5(1.3) | 28.9(0.4) | 26,6 (0.2) | 342 (1.7) | 36.3(0.7) | 37.8 (1.7)
NUS-WIDE ARI 9.00 (0.7) 104 (0.0) | 114 (0.7) | 5.70 (0.0) | 13.5 (0.4) | 6.80 (0.5) | 590 (0.2) | 7.20 (1.6) | 9.50 (1.0) | 12.9 (0.4) | 13.7 (0.5)
F-score 243 (0.6) | 22.1(0.0) | 24.9 (0.5) | 25.0 (0.0) | 249 (0.4) | 184 (0.5) | 19.4 (0.2) | 23.0 (0.4) | 26.4 (1.1) | 28.4 (1.5) | 28.0 (1.1)
Precision || 18.0 (0.6) | 21.1(0.0) | 20.7 (0.5) | 152 (0.0) | 23.4 (0.4) | 18.5(0.5) | 16.8 (0.2) | 16.6(0.1) | 27.2 (0.7) | 24.3 (1.1) | 24.6 (1.4)
Recall 37.5(2.6) | 23.1(0.0) | 30.0 (0.8) | 71.1 (0.0) | 263 (0.4) | 18.3 (0.4) | 22.9(0.3) | 37.4(23) | 256 (1.4) | 343 (29) | 328 (32)
ACC 53.1(9.1) | 47.8 (3.0) | 54.6 (0.0) | 50.3 (0.0) | 52.4 (0.0) | 26.6 (1.1) | 54.7 (0.6) | 58.6 (0.4) | 55.3 (0.0) | 61.3 (0.9) | 63.6 (2.5)
NMI 7.10 (52) | 9.70 (2.3) | 8.70 (0.0) | 16.0 (0.0) | 17.0 (0.0) | 2.80 (0.5) | 2.10 (0.4) | 13.3 (0.4) | 23.0 (0.0) | 17.8 (2.0) | 25.4 (4.9)
Purity 59.8 (5.9) | 57.5(1.9) | 57.2(0.0) | 59.4 (0.0) | 57.7 (0.3) | 27.7 (1.4) | 559 (0.3) | 72.5 (4.6) | 68.1 (0.0) | 61.3 (0.9) | 66.0 (2.8)
WebKB-texas ARI 7.00 (16.6) | 12.0 (3.4) | 14.8 (0.0) | 13.8 (0.0) | 17.9 (0.0) | 0.10 (0.0) | 220 (0.8) | 13.1 (2.5) | 20.0 (0.0) | 17.2 (1.6) | 24.5 (6.1)
F-score 484 (5.0) | 42.6 (0.4) | 53.2(0.0) | 453 (0.0) | 43.0 (0.0) | 259 (0.4) | 533 (0.4) | 53.5(1.1) | 495 (0.0) | 56.2 (0.9) | 57.3 (2.0)
Precision || 40.4 (7.5) | 453 (24) | 43.7 (0.0) | 45.9 (0.0) | 52.1 (0.0) | 20.0 (0.4) | 36.9 (0.3) | 42.1 (0.5) | 50.7 (0.0) | 44.0 (0.8) | 48.4 (3.1)
Recall 75.6 (1.6) | 404 (5.4) | 67.9 (0.0) | 44.9 (0.0) | 36.6 (0.0) | 37.1 (0.6) | 95.6 (0.6) | 73.8 (6.5) | 48.4 (0.0) | 77.5 (1.0) | 70.9 (6.6)
TABLE V

ABLATION STUDY OF SEVERAL ABLATION METHODS ON THE TESTED DATASETS, WHERE THE BEST AND SECOND BEST ACC PERFORMANCE ARE HIGHLIGHTED
IN BOLD AND UNDERLINED (MEAN% AND STANDARD DEVIATION%). THE v' MEANS THAT THIS STRATEGY IS CONSIDERED, AND X OTHERWISE

Graph Laplacian X v X X v v X v v

Datasets Bi-Sparsity X X v X v X v v v

Orthogonality Constraints X X X v X v v v v
ALOI || 53.1(40) | 539 (0.1) | 544 (0.9) | 55.5(2.9) | 60.6 (0.7) | 55.4 (3.0) | 48.6 (1.9) | 68.8 (3.4) | 73.7 (2.9)
Caltech101-7 | 740 23) | 746 22) | 77.6 (1.4) | 75.0 (0.5) | 78.2(0.3) | 81.9 (0.6) | 79.8 (0.3) | 82.1 (0.3) | 84.3 (0.3)
Caltech101-20 | 573 (0.6) | 580 (3.2) | 59.9 (0.7) | 58.7 (0.9) | 60.1 (0.6) | 64.6 (0.6) | 65.7 (0.5) | 65.7 (0.8) | 68.3 (0.4)
Notting-Hill || 50.6 (2.0) | 64.8(0.9) | 69.3 (1.1) | 60.6(1.6) | 754 (0.3) | 52.3 (24) | 73.7 3.6) | 78.1 (4.1) | 824 4.1
NUS-WIDE | 25.6(0.3) | 27.3(1.2) | 28.5(0.9) | 26.2(0.5) | 32.0 (0.4) | 27.8 (0.7) | 30.0 (0.5) | 355 (0.7) | 36.9 (0.8)
WebKB-texas | 57.8 (0.8) | 58.0 (1.2) | 585 (0.4) | 60.0(2.6) | 60.3(0.1) | 58.9 (0.5) | 59.4 (0.2) | 61.3 (0.9) | 63.6 (2.5)

us to consider this critical point when selecting the number of
blocks. Moreover, we can also observe that the performance is
relatively encouraging within 50 epochs and degrades beyond
this value. This means that a larger number of epochs does
not imply better performance. Generally, the number of blocks
maintains good robustness within a fixed range (such as ALOI
8-13, Notting-Hill 3-5) with different ranges for each dataset. If
the number is smaller or larger than this range, the performance

of the models is not stable enough, and remarkable performance
cannot be obtained. Meanwhile, the number of epochs is kept
within 70, which can achieve a desirable multi-view clustering
effect. Therefore, the numbers of blocks and training epochs are
indicated in Table III.

Fig. 5 shows the parameter sensitivity of ., 3, and § in DBMC
and EDBMC for the six datasets. The abscissa of the values «,
3, and § are searched by the grid {1074,1073,...,10%,10},
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(d) Notting-Hill (EDBMC) (¢) NUS-WIDE (EDBMC) (f) WebKB-texas (EDBMC)

Fig. 5. Parameter sensitivity analysis of «, 3, and § of DBMC and EDBMC on six datasets, where the values of «, (3, and § range within
{1074,1073,...,10%,10*}, and 8 = 4.

TABLE VI
PARAMETER SENSITIVITY ANALYSIS OF PROVIDING v AND ¢ VALUES IN DBMC AND USING DIFFERENTIABLE PROXIMAL OPERATORS TO REPLACE TWO
PROXIMAL STEPS IN EDBMC ON SiX DATASETS, WHERE ~y AND ¢ RANGE WITHIN {10*4, 1073, ..., 102} IN DBMC. THE BEST AND SECOND BEST RESULTS

ARE HIGHLIGHTED IN BOLD AND UNDERLINED (MEAN% AND STANDARD DEVIATION%)

Methods [ DBMC |  EDBMC
Datasets \ yand ¢ || 10=* | 1073 | 1072 | 107! | 10° | 10! | 10> | Learnedy and ¢

NMI || 387 (0.3) | 71.7 (1.4) | 60.4 (2.1) | 10.0 (0.6) | 34.9 (1.0) | 48.1 (0.8) | 45.7 (0.6) 74.8 (1.4)

ALOI Purity 47.5(0.7) | 69.0 (3.4) | 53.7 (5.6) | 25.3 (0.6) | 48.1 (2.5) | 47.1 (0.7) | 42.7 (0.6) 73.9 (3.9)

F-score 37.8 (0.5) | 652 (2.2) | 56.2 (2.4) | 20.6 (1.2) | 33.7 (1.0) | 42.9 (0.9) | 40.8 (0.7) 70.7 (1.6)

NMI 33.9(0.9) | 534 (1.5) | 453 (1.9) | 13.5(0.1) | 47.9 (0.3) | 40.7 (1.6) | 35.5(0.9) 63.5 (1.1)

Caltech101-7 Purity 47.1 (3.7) | 82.2(0.4) | 799 (0.4) | 62.6 (0.4) | 78.0 (0.1) | 77.8 (1.2) | 75.8 (0.6) 85.5 (0.6)

Fescore || 594 (1.7) | 77.6 (0.6) | 73.1 (0.6) | 52.8 (0.8) | 743 (0.1) | 71.0 (1.3) | 67.7 (0.9) 81.5 (0.8)

NMI 48.4 (1.1) | 479 (1.1) | 469 (0.9) | 26.1 (1.6) | 26.2 (1.3) | 32.9 (0.7) | 39.7 (1.3) 54.7 (0.5)

Caltech101-20 Purity 65.5 (0.6) | 65.8 (0.7) | 643 (0.4) | 54.1 (1.4) | 54.2(0.9) | 57.7 (0.3) | 60.8 (1.7) 68.8 (0.5)

Fescore || 543 (0.9) | 553 (0.8) | 54.8 (0.7) | 417 (1.5) | 63.2 (0.6) | 46.4 (0.4) | 51.4 (0.8) 60.2 (0.5)

NMI || 615 (0.3) | 653 (1.6) | 514 (1.7) | 31.8 (0.6) | 593 (1.0) | 62.1 (0.0) | 52.1 (0.0) 717 2.2)

Notting-Hill Purity 75.0 (0.2) | 78.6 (4.2) | 73.5(1.9) | 59.8 (2.3) | 74.2 (0.1) | 76.3 (0.0) | 54.1 (0.0) 86.0 (4.1)

F-score 68.7 (0.3) | 71.8 (1.6) | 62.2 (0.5) | 48.7 (0.4) | 66.3 (0.6) | 67.8 (0.0) | 57.8 (0.0) 76.9 (2.4)

NMI 12.8 (0.5) | 18.5(1.2) | 182 (1.1) | 4.80 (0.4) | 15.5(0.4) | 153 (0.4) | 14.9 (0.8) 18.9 (1.0)

NUS-WIDE Purity 30.8 (0.8) | 36.3 (0.7) | 36.2 (0.5) | 269 (0.6) | 32.9 (0.2) | 33.1 (0.2) | 33.0 (0.6) 37.8 (1.7)

F-score 23.6 (0.3) | 284 (1.5) | 27.7 (1.4) | 21.0 (0.5) | 26.6 (0.4) | 26.5 (0.4) | 259 (0.5) 28.0 (1.1)

NMI 9.10 (0.9) | 17.8 (2.0) | 8.20 (2.0) | 11.5(1.5) | 8.80 (1.1) | 9.50 (0.6) | 9.60 (0.5) 254 4.9)

WebKB-texas | Purity || 59.6 (0.3) | 613 (0.9) | 58.2 (0.8) | 60.6 (0.8) | 60.4 (22) | 56.7 (2.0) | 57.0 (1.5 66.0 (2.8)

F-score || 53.5 (0.1) | 362 (0.9) | 55.1 (0.5) | 525 (12) | SL1(L1) | 52.3 (1.7) | 54.3 (0.5) 57.3 (2.0)
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Fig. 6.

and 8 = 4. It can be seen that the methods learn a satisfactory
geometric or topological structure of the associated features
and the good orthogonality of the consistent representations.
When a, 3, and § are fixed as 1073, the models obtain good
overall performance. In contrast, if the regularization terms do
not select a definitely suitable parameter, it will lead to learning
a deformed topology and a twisted orthogonality, resulting in
invalid clustering performance. Thus, the values of a, 3, and §
are consistent in Table III.

Table VI shows the influence of providing v and ¢ values in
DBMC and using differentiable proximal operators to replace
two proximal steps in EDBMC. The values of v and ( are
searched by the grid {1074,1073,...,10%}. We select NMI,
Purity, and F-score of the proposed frameworks as evalua-
tion metrics. On one hand, it can be observed that the three
indicators illustrate the superiority of DBMC when ~ and ¢
= 1073, Therefore, the values of v and ¢ used in DBMC are
presented in Table III. On the other hand, the differentiable
proximal operators of the self-learning parameters in EDBMC
provide better performance than fixing  and ¢ values in the
two proximal steps, and EDBMC performs better than DBMC.
This demonstrates that we have learned a more advantageous
sparse representation with learnable parameters for consistent
collaborative representations.

The loss values of DBMC and EDBMC with increasing
numbers of epochs on different datasets are shown in Fig. 6. It
can be seen that the loss values of DBMC and EDBMC gradually
decrease as the number of epochs increases. Eventually, it will
converge to a stable value and fluctuate slightly when the epoch
number is large enough, which indicates convergence.

Number of Epochs
(e) NUS-WIDE (EDBMC)

3‘0 40 50 0 10 20 30 40 50
Number of Epochs

(f) WebKB-texas (EDBMC)

The convergent curves of the proposed frameworks on the six tested datasets.

V. CONCLUSION

In this paper, we proposed an effective differentiable network
called DBMC and an improved version named EDBMC, which
were transformed into deep networks based on the proposed
objective loss functions. Each block of the networks was differ-
entiable and reusable. Moreover, DBMC and EDBMC learned
a joint and consistent multi-view collaborative representation
from multi-view features and guaranteed sparsity between the
multi-view feature space and consistent collaborative repre-
sentation space. Correspondingly, two effective frameworks of
convergence were proved. Finally, comprehensive experiments
on six real-world datasets validated the effectiveness of the
proposed frameworks. From the experimental results, it is con-
cluded that DBMC provided improved clustering results, while
EDBMC primarily enhanced the capability of parameter self-
learning and obtained even better performance than DBMC.
Deep differentiable networks based on optimization methods
could guide the multi-view clustering tasks to obtain more
interpretable performance. In future work, we will attempt to
extend the proposed networks to more realistic applications by
combining semi-supervised methods, subspace learning, and
other techniques, and explore more interpretable deep networks.
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