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Contrastive Graph Convolutional Networks with
Generative Adjacency Matrix

Luying Zhong, Jinbin Yang, Zhaoliang Chen and Shiping Wang

Abstract—Semi-supervised node classification with Graph
Convolutional Network (GCN) is an attractive topic in social
media analysis and applications. Recent studies show that GCN-
based classification methods can facilitate the accuracy increase
of learning algorithms. However, most of the existing methods
do not conduct adequate explorations of the complementary
information within the topology structure. Besides, they also
suffer from the insufficient excavation of useful information
among nodes and the scarcity of labeled samples, resulting in
undesired classification performance. To cope with these issues,
this paper proposes a contrastive GCN-based framework to
jointly leverage the topology graph and the self-adaptive topology
graph with feature information in semi-supervised information.
In order to extract more valid potential information in the
topology graph and increase the flexibility of the framework,
we learn an adjacency matrix supervised by a flexible loss
that exploits node embeddings to reinforce the topological rep-
resentation capability of the adjacency matrix. To maximize
the homogeneity of these two distinct graphs, we design an
improved semi-supervised contrastive loss. In order to enrich
scarce label information, we propose a self-supervised mechanism
to generate reliable pseudo labels from abundant unlabeled data,
which further refines the learnable adjacency matrix. With these
modules, both unlabeled and labeled samples jointly furnish
the supervision signals, thereby improving the accuracy of the
proposed model. Extensive experimental results on real-world
datasets demonstrate the effectiveness and superiority of the
proposed algorithm against state-of-the-arts.

Index Terms—Graph convolutional networks, semi-supervised
classification, generative adjacency matrix, contrastive learning,
self-supervised learning.

I. INTRODUCTION

W ITH powerful capabilities of feature representation,
graphs have been leveraged to depict a wide range

of objects in various data processing fields, such as social
network analysis [1], [2], [3], physical systems [4], [5] and
computer vision [6], [7], [8]. As an important technique to
explore graphs, GCN [9] has been extensively used in consid-
erable practical applications, such as link prediction [10], [11],
knowledge graph [12], [13], [14], and node clustering [15],
[16], [17], [18] etc. As the extension of convolutional neural
networks from Euclidean to non-Euclidean domain, GCN
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generally calculates the embedding of nodes with graph con-
volutional layers, thereby delivering valid information among
neighbors. The typical GCN and its variants [3], [19], [20]
employed spectral theory to apply traditional CNN to the non-
Euclidean structure. Extensive experimental results indicate
that GCNs remarkably surpass traditional graph embedding-
based methods. In terms of node classification [21], [22],
GCNs reconcile both topology structures and node features
to improve the performance of semi-supervised classification
with limited supervision signals. To enrich graph structures,
some self-supervised methods to study underlying information
from unlabeled data have been proposed. A typical technique
is contrastive learning [23], [24] which is able to generate
effective data representations by exploring the information
between similarities and dissimilarities among a set of both
unlabeled examples and labeled examples.

Although GCN has gained great success in semi-supervised
learning, it still suffers from limited supervision informa-
tion, which poses a great difficulty for network training and
probably degrades the performance of GCNs. To overcome
the limited signals, prior works [25], [26] developed a self-
training GCN-based model by assigning pseudo labels to top
k confident unlabeled nodes. However, the key to generating
pseudo labels is the high confidence, and it is inadequate for
these works to only select top k confident unlabeled nodes as
the condition of generating pseudo data in downstream tasks.
Besides, the node relationships in the initial training iterations
are mostly unreliable due to the instability of the model, which
causes undesired performance. In order to generate reliable
pseudo information, more restrictions are imposed to improve
the trustworthiness of selected nodes.

Besides, prior studies suggested that it is difficult for feature
and topology structures to be optimally integrated into a
complex graph. For example, a GCN-based framework named
AM-GCN [27] exploited feature similarity between nodes to
extract complementary feature information when performing
node propagation on a topology network. Wan et al. [28]
proposed a contrastive GCN-based method by employing a
semi-supervised contrastive loss to extract the potential rela-
tionship between graph and data features. However, it is not
enough for these works to obtain only potential feature in-
formation without concentrating on implicit information from
topology spaces, leading to the insufficient co-optimization
of feature and graph fusion learning. Moreover, the original
data containing sampling noise and useless information may
lead to performance degradation. To effectively fuse feature
and topology spaces, the potential information without the
interference of noise needs to be extracted from feature and

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2023.3254888

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fuzhou University. Downloaded on March 11,2023 at 08:30:57 UTC from IEEE Xplore.  Restrictions apply. 



2

graph structures to enrich deep correlation information.
In order to address these issues, this paper proposes a

parallel flexible GCN-based framework named Contrastive
Graph Convolutional Networks with generative adjacency
matrix (CGCN) to jointly leverage the topology and feature
graph refined via node features for semi-supervised learning.
Especially, to optimally integrate node features and topology
structure via minimizing the interference of sampling noise,
CGCN considers to generate a latent adjacency matrix for
exploring both implicit topology and feature information.
To ensure the reliability of the model, more constraints are
imposed to improve the trustworthiness of selected nodes.
Therefore, as demonstrated in Fig. 1, CGCN includes two
primary modules. One is the generation of a self-adaptive
adjacency matrix network with a flexible loss (SA-network)
to optimally integrate topology and feature spaces without the
interference of noise and useless information. The other is the
joint GCN network containing a pseudo-labeling mechanism
and semi-supervised loss (PL-network) to generate reliable
pseudo signals and increase the robustness of the model.

The whole training procedure can be divided into three
fundamental stages. Inspired by the alternating training of two
networks for generative adversarial networks, the first stage
employs an autoencoder to extract complementary informa-
tion from a topology space. To generate useful and reliable
complementary topology information, a flexible evaluator is
applied to assess the quality of extra information. Then we
fuse the complementary feature information constructed by
the kNN method from node features. The second stage applies
an improved semi-supervised contrastive loss to maximize the
consistency of embeddings yielded from two distinct graphs.
The final stage uses a self-supervised mechanism to capture the
signals of mutual supervision and generates feedback to refine
the inputs. Especially, the self-supervised mechanism utilizes
the reliable pseudo signals owing to model stabilization,
high threshold setting, and alignment mechanism to generate
feedback for refining the inputs.

Consequently, CGCN is an adjustable model that explores
a learnable adjacency matrix and generates pseudo labels with
contrastive learning. The main contributions of this paper are
summarized from the following four aspects:

• Propose a contrastive graph convolutional network frame-
work to propagate representations across the topology and
feature graphs, where semi-supervised contrastive loss is
defined to maximize the consistency of graphs.

• Construct a self-adaptive adjacency matrix via adopting
an autoencoder with a flexible loss, which supervises the
generative process by fusing node features.

• Design two networks to generate pseudo labels during the
training process, on the basis of which a self-supervised
strategy for supervision information enrichment is con-
structed with contrastive learning.

• Substantial experiments on benchmark datasets show that
the proposed method outperforms state-of-the-art GCN-
based methods in terms of semi-supervised classification.

The rest of this paper is organized as follows. Related
works on GCN are reviewed in Section II. We elaborate on
the proposed CGCN in Section III, including the detailed

introduction of each component and algorithm analyses. Fi-
nally, the effectiveness of the proposed framework is verified
via substantial experiments in Section IV, and our work is
concluded in Section V.

II. RELATED WORK

In this section, we review several representative works on
GCN and unsupervised learning techniques.

A. Graph Convolutional Network
Graph-based semi-supervised learning has been a popular

branch for the past two decades. It aims to utilize scarce
labeled data to achieve the purpose of classification on mas-
sive unlabeled nodes. This is usually realized by the low-
dimensional embeddings with Laplacian eigenmaps [29] and
Markov random walks [30], etc. Especially, spectral networks
[31] defined convolutional operations by decomposing a graph
signal s ∈ Rn on Fourier domain and then applying a spectral
filter gθ to the spectral components, formulated as

gθ ? s = Ugθ(Λ)UT s, (1)

where ? denotes the convolutional operation, and the normal-
ized graph Laplacian matrix L = IN − D−1/2AD−1/2 =
Uθ(Λ)UT , D represents the degree matrix, A and Λ are
denoted as the adjacency matrix and the diagonal matrix of
eigenvalues, respectively. Further, David et al. replaced gθ(Λ)
with the K-th Chebyshev polynomial T(s), represented as

gθ ? s =

K∑
i=0

θiTi(L)s, (2)

where θi is the coefficient vector of the i-th order Chebyshev
polynomial Ti(L). For the purpose of saving computational
resources, Kipf et al. [9] performed the first-order approxima-
tion of truncated Chebyshev polynomial [32], i.e.,

Z = σ(D̃
−1/2

ÃD̃
−1/2

XΘ), (3)

where σ(·) denotes an activation function, Ã = A+IN , D̃ii =∑
j Ãij , X ∈ RN×C with C channels, Θ ∈ RC×F represents

a trainable parameter matrix and Z ∈ RN×F is the embedding
after convolution.

Due to the outperformance of GCN, considerable variants
of GCN have been explored. For example, Liu et al. [33]
integrated GCN with a hidden conditional random field to
reserve the skeleton structure information. Xu et al. [34] put
forward an answer-centric radial graph convolutional networks
to cope with the visual question generation tasks. Lei et al. [35]
established the graph receptive fields according to diffusion
paths and applied them to build a compact graph convolutional
network. A multi-stage GCN-based framework was presented
by Sun et al. [25] with the self-supervised learning to improve
the generalization performance on the graph with limited
supervision information. Bo et al. [19] designed a frequency
adaptation GCN framework to perceptively combine the low-
frequency and high-frequency signals, and improved the per-
formance of the GCN model. These GCN-based works have
significantly promoted the performance of different learning
tasks in both Euclidean and non-Euclidean domains.
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Fig. 1: Architecture of the proposed CGCN, which is a flexible framework of parallel GCNs w.r.t. feature and topology graphs.
The networks involve two essential parts: SA-network and PL-network. The training procedure contains three fundamental
stages. First, we take the identity matrix as an input of the autoencoder with Lsa being the loss function. A flexible loss
supervises the output of the autoencoder, and then fuses Af constructed by the kNN method. Second, both Ap and At are fed
to GCNs with a semi-supervised contrastive loss. Finally, a self-supervised mechanism is employed to generate a feedback to
refine inputs. To this end, intact representations of both graphs and node features are learned simultaneously to promote the
performance of GCN.

B. Unsupervised Learning

Unsupervised learning [36] is a type of machine learning
algorithms that seek for patterns from data without known la-
bels, as it can capture rich information contained in the data to
guide the representation learning. Compared with supervised
learning, unsupervised learning does not rely on any labeled
samples and finds patterns by mining the intrinsic features
of the data, which is able to identify undetected patterns.
Unsupervised learning models like contrastive learning and
generative learning can be employed in clustering [37], associ-
ation [38] and dimensionality reduction [39], etc. In particular,
contrastive learning [40] aims to train an encoder to learn the
feature representation of samples by comparing the data with
positive samples and negative samples in the feature space. He
et al. [41] designed an unsupervised momentum method for
representation learning, and experimental results demonstrated
that the ImageNet classification with MoCo can exceed the
performance of supervised learning. Chen et al. [23] proposed
a visual representation learning framework, and showed that
the effect of this model was close to supervised models. Caron
et al. [42] utilized a multi-crop image transformation method
and introduced clustering into the model, thus decreasing
the computation complexity. Kaveh et al. [43] learned node-
level and graph-level representations by contrasting different
structures of a graph.

Generative learning is a machine learning method that

explores the high-level semantics similar to the training data to
extract valid information. Autoencoder is one of the generative
methods which aims to encode the original data, perform
dimensionality reduction, and discover patterns between the
data. Wang et al. [44] proposed a semi-supervised deep
model which used an autoencoder and exploited the first-order
proximity to capture non-linear network structures. Wen et al.
[45] designed a deep embedding network by encoding each
vertex as a low-dimensional vector representation with adver-
sarially regularized autoencoders to enhance the generalization
capability. Ke et al. [46] employed two equivalence definitions
containing structural equivalence and regular equivalence to
extract more discriminative node representations. These gener-
ative learning algorithms obtain extra valuable information via
exploring deeper information from the original data, thereby
enhancing the model performance.

III. THE PROPOSED METHOD

A. Overview and Notations

For the purpose of extracting more complementary infor-
mation from the topology space and distilling high-confident
underlying information, we develop a learnable and contrastive
graph convolutional network framework consisting of two
primary components: SA-network and PL-network. These
modules are divided into three stages of training. First, we use
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TABLE I: A summary of primary notations in this paper.

Notations Explanations Notations Explanations

Ψl Labeled set with l samples. Wv , bv Trainable weight and bias of the v-th layer of autoencoder.
Ψu Unlabeled set with u samples. Wv

e , bv
e Trainable weight and bias of the v-th layer of evaluator.

Ψ Set of n samples with n = l + u. As Pseudo adjacency matrix.
X Feature matrix with n× d. Ap Latent adjacency matrix.
Y Label matrix with n× c. HΦ1 ,HΦ2 Embeddings of original and generative graphs.
At Original adjacency matrix with n× n. Lssc Semi-supervised contrastive loss function.
σ (·) Activation function. Len Cross-entropy loss function.
Ae,Af Complementary topology and feature adjacency matrices. O Predictive output of the overall framework.
Lsa, Lse Loss functions of autoencoder and evaluator. W(i) Trainable weight matrix during graph convolutions.

SA-network to generate the complement topology adjacency
matrix via node features, then employ the pseudo-labeling
mechanism to achieve reliable pseudo information. Finally, a
semi-supervised loss is adopted to maximize the consistency of
the two views through PL-network. They make up an overall
training scheme of the whole network.

Suppose that Ψ = {x1, · · · , xl, xl+1, · · · , xn} is a set with
n samples, where l labeled samples form a labeled set Ψl and
the remaining u = n− l unlabeled samples form an unlabeled
set Ψu with l � u. Besides, we denote X ∈ Rn×d as the
feature matrix, whose i-th row consists of the feature vector
xi of the i-th node and d denotes the feature dimension. Label
matrix is represented as Y ∈ Rn×c with Yij = 1 indicating
that the i-th node belongs to the j-th class. The symbol c
represents the number of classes. We denote the adjacency
matrix as At ∈ Rn×n with Atij = 1 if there is an edge between
the i-th node and the j-th node, and Atij = 0 otherwise. The
feature matrix X and the adjacency matrix At construct the
topology graph Gt(X,At).

So as to further clarify the mathematical notation usages in
this paper, the explanations of primary notations are listed in
Table I.

B. Generative Adjacency Matrix Network with Flexible Loss

In order to capture the potential relationships in the topology
space and feature space, and minimize the interference of
sampling noise, the proposed CGCN employs a generative
adjacency matrix network to fuse node and graph representa-
tions to construct a learnable adjacency matrix. Based on this,
in pursuit of extracting latent information from the topology
space, an autoencoder is employed to explore underlying
topology representations from the original graph. Therefore,
we adopt an identity matrix I as the input to the autoencoder,
so that the complementary topology adjacency matrix can be
defined as Ae = g(f(I)), where f(·) is an encoder and g(·) is a
decoder. With the autoencoder, we can map the identity matrix
onto the space with the same dimension as At. Formally,
the adjacency matrix Aev ∈ Rn×dv of the v-layer for the
autoencoder is

Aev = σ
(
Aev−1Wv + bv

)
, (4)

where Ae0 = I, Wv ∈ Rd(v−1)×dv and bv ∈ Rdv are weight
and bias of the v-th layer, respectively. We apply σ(·) as the
activation function for the autoencoder.

To avoid the interference of sampling noise and useless
information in the original data, the autoencoder employs an
identity matrix as an input. To extract the implicit topology
information associated with At, the loss function of the
autoencoder is described as

Lsa =‖At − Ae‖2F . (5)

To evaluate the quality of the complementary topology matrix
Ae, a new flexible criterion as supervision signals is considered
to measure the valid topology representation implied in Ae.
Due to the variation in different datasets, the criterion is
desired to be learnable. Therefore, we use a fully-connected
neural network as an evaluator to assess the quality of Ae. We
regard the complementary topology adjacency matrix as the
input of the evaluator and obtain a value that is positively cor-
related to the quality of the generative matrix Ae. The quality
value is adopted to evaluate the ability of the autoencoder to
capture a more discriminative and complementary representa-
tion in the original topology graph. A higher score indicates
a better quality of the reconstructed matrix. Therefore, the
autoencoder under the supervision of the evaluator can extract
more discriminative topology data to reconstruct Ae with a
high value. Thus, we hope that the score Ge obtained from the
evaluator meets

Ge = max
we,be

(Eval (Ae)) , (6)

where we and be are the weight and bias of the fully-connected
neural network. Therefore, Eval (·) evaluates the quality of the
complementary topology information of Aev defined as

Aev = σ
(
Aev−1Wv

e + bve
)
, (7)

where Aev is the embedding of the v-th layer for the evaluator.
In order to augment the ability of the evaluator to differentiate
the quality of data, we measure the quality of the original
adjacency matrix At as a high criterion by the evaluator. Mean-
while, to confuse the autoencoder, we input the complementary
topology adjacency matrix Ae reconstructed by the autoen-
coder as low-score samples into the evaluator. In the meantime,
the autoencoder attempts to generate more discriminative and
complementary topology information during learning. The aim
is to let the autoencoder output a more valid adjacency matrix
against the evaluator through the alternating training process
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of two networks. Therefore, the objective of the two networks
is defined as

Ge = max
wt,bt

(
Eval

(
At
))

+ min
we,be

(Eval (Ae)) , (8)

where wt and bt are the weight and bias of evaluator. The
above equation indicates that during the training procedure, the
original data are scored as higher as possible, and the matrix
generated by the autoencoder is scored as lower as possible.
Therefore, the evaluator is described as a loss function because
it gets a smaller value when receiving an expected Ae, and
outputs a larger value conversely. In addition, we set the score
from 0 to 1 to calculate the differences between the original
matrix At and the generative matrix Ae. Thus the loss function
of the evaluator is defined as

Lse =−
[
log
(
Eval

(
At
))

+ log (1− Eval (Ae))
]
. (9)

Through the alternative training of the autoencoder and eval-
uator, the potential topology information is extracted from the
topology space. Besides, in order to capture the latent feature
information from the nodes, we employ the kNN method to
construct a feature adjacency matrix Af . Specifically, we first
calculate the similarity matrix C ∈ Rn×n of all nodes by

Cij =
xi · xTj
‖xi‖ · ‖xj‖

, (10)

and then select the top k similar nodes as neighbors of each
node. To enable the topology and feature information fusion,
we give a weight α to Ae, and the generative adjacency matrix
confused with topology and feature information is updated by

Ap = αAe + (1− α)Af . (11)

Subsequently, the latent adjacency matrix Ap combined with
feature matrix X constructs a new graph Gp(X,Ap).

C. GCN with Pseudo-labeling Mechanism

To extract the common information from the two spaces
in different views Φ1 and Φ2, we jointly feed the original
topology graph Gt(X,At) and the learnable topology graph
containing feature information Gp(X,Ap) into GCN layers
with shared parameters. Then the final output embeddings can
be represented as HΦ1 and HΦ2 , respectively:

HΦ1 = softmax
(

Â
t
σ
(

Â
t
XW(0)

)
W(1)

)
, (12)

HΦ2 = softmax
(

Apσ
(

ApXW(0)
)

W(1)
)
, (13)

where Â
t

= D̃
− 1

2 Ã
t
D̃

− 1
2 , Ã

t
= At + I and D̃ii =

∑
j Ã

t

ij .
W(i) (i ∈ {0, 1}) denotes a trainable weight matrix.

For making full use of different views of topology graphs
and feature graphs, we design a self-supervised strategy to
enrich the supervision signals on the basis of the unlabeled
set Ψu. To ensure the reliability of pseudo information, the
proposed method sets the following conditions before gener-
ating pseudo labels to guarantee the reliability. First, because
the pseudo information is highly relevant to the reliability of
GCN model, we train a fixed number of training epochs on

the initial labeled and unlabeled samples to learn more reliable
node relationships. Second, after a certain number of training
epochs, we set a high threshold δ and select the vertices
from the embeddings HΦ1 and HΦ2 that satisfy the maximum
value maxv h

Φt
iv > δ, and set j = arg maxv h

Φt
iv (t = 1, 2)

as the pseudo label of the i-th vertex. Finally, an alignment
mechanism is applied to further guarantee the reliability of
chosen data. Therefore, we align the pseudo labels on the same
selected nodes from two embeddings to ensure that the same
node from different embeddings has the same pseudo label,
thereby facilitating the propagation of label information.

These selected nodes are sorted by their pseudo labels and
interlinked within the same class distribution. The selected
nodes make up the pseudo-labeling set Ψp and the row vectors
picked from HΦ1 come into being the pseudo-labeling em-
bedding Hp ∈ Rm×c, where m is the number of the selected
nodes. Besides, the corresponding pseudo labels construct a
pseudo label set Yp ∈ Rm×c. Ypij = 1 represents the i-th node
belonging to j-th pseudo label. We create a pseudo adjacency
matrix As ∈ Rn×n with nodes of the same category as 1
and 0 otherwise. In order to fully exploit the credibility of
the pseudo labels, we take As as the feedback to refine the
generative latent adjacency matrix Ap . Given a weight λ on
As, this progress is formulated as

Ap = Ap + λAs. (14)

In order to leverage more high-confident pseudo labeled
data on graphs with limited labels, we also consider the
selected pseudo-labeling information in the semi-supervised
loss to maximize the consistency of the two distinct graphs,
thereby promoting the dissemination of label information.
Detail description is shown as follows.

D. Semi-supervised Contrastive Loss

In the proposed module, we improve the semi-supervised
contrastive loss to maximize the consistency between topology
and feature graphs. Specially, we add the pseudo-labeling
technique to design a semi-supervised contrastive loss, which
consists of two components: the supervised and unsupervised
contrastive losses.

Contrastive learning is expected to make the embeddings of
the same node from different views more similar, and outputs
of different nodes from distinct views are more dissimilar.
Therefore, we describe the unsupervised contrastive loss as

Luc =
1

2n

n∑
i=1

(
LΦ1
uc (xi) + LΦ2

uc (xi)
)
, (15)

where LΦ1
uc (xi) and LΦ2

uc (xi) denote the unsupervised con-
trastive losses of views Φ1 and Φ2, respectively. Specifically,
LΦ1
uc (xi) is measured by

LΦ1
uc (xi) = − log

exp
(
〈hΦ1
i ,hΦ2

i 〉
)

∑n
j=1 exp

(
〈hΦ1
i ,hΦ2

j 〉
) , (16)

where hΦi

k defines the k-th row vector of the output embedding
HΦi (i ∈ {0, 1}), and < · > denotes the inner product mea-
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suring the similarity of hΦ1

k and hΦ2

l . LΦ2
uc (xi) is calculated

as

LΦ2
uc (xi) = − log

exp
(
〈hΦ2
i ,hΦ1

i 〉
)

∑n
j=1 exp

(
〈hΦ2
i ,hΦ1

j 〉
) . (17)

It is worth noting that a lower LΦ1
uc (or LΦ2

uc ) indicates a higher
similarity. Furthermore, in order to incorporate the scarce and
reliable labels, and take advantage of unlabeled information,
a new supervised contrastive loss blended with pseudo labels
is defined as

Lsc =
1

2(l +m)

l+m∑
i=1

(
LΦ1
sc (xi) + LΦ2

sc (xi)
)
. (18)

Generally, the supervised contrastive losses of xi in Ψl and
Ψp can be calculated by

LΦ1
sc (xi) = − log

∑l+m
k=1 l

[r
Φ1
i =r

Φ2
k ]

exp
(
〈hΦ1
i ,hΦ2

k 〉
)

∑l+m
j=1 exp

(
〈hΦ1
i ,hΦ2

j 〉
) , (19)

LΦ2
sc (xi) = − log

∑l+m
k=1 l

[r
Φ2
i =r

Φ1
k ]

exp
(
〈hΦ2
i ,hΦ1

k 〉
)

∑l+m
j=1 exp

(
〈hΦ2
i ,hΦ1

j 〉
) , (20)

where hΦ1
r and hΦ2

r rely on HΦ1 , HΦ2 and Hp in both the
labeled set Ψl and the pseudo set Ψp.

By combining the unsupervised contrastive loss and the
supervised contrastive loss, we obtain the semi-supervised
contrastive loss with pseudo labels:

Lssc = Lsc + ηLuc, (21)

where η represents a weight of Lsc. Consequently, we leverage
the scarce yet relatively reliable unlabeled information to
provide additional supervised signals.

E. Model Training

To obtain an overall predictive output O, we combine the
embeddings HΦ1 and HΦ2 for capturing information on feature
space and topology space represented as

O = βHΦ1 + (1− β)HΦ2 , (22)

where β ∈ (0, 1) is a hyperparameter. In addition, cross-
entropy loss is used to evaluate the differences between the
predictive output and the ground truth as

Len = −
l∑
i=1

c∑
j=1

Ylij lnOij , (23)

where Yl is the labeled matrix. Therefore, the overall loss
function of the proposed method can be described as

L = γLen + (1− γ)Lssc, (24)

where γ is a hyperparameter to regulate the importance
between the semi-supervised contrastive loss Lssc and cross-
entropy loss Len. In a summary, the procedure for CGCN is
presented in Algorithm 1.

Algorithm 1 Contrastive Graph Convolutional Networks with
generative adjacency matrix (CGCN)

Input: Graph Gt(X,At), label set Y, threshold δ, training
interval Γ and the number of iterations ξ1 and ξ2.

Output: Node embedding O.
1: # Pre-train the complementary adjacency matrix Ae;
2: while not convergent or reaching ξ1 do
3: Forward propagation with an identity matrix as an input

in Eq. (4), compute Lsa and optimize the autoencoder
by backward propagation with Eq. (5);

4: Forward propagation with an identity matrix as an input
in Eq. (4), compute Lse and optimize the evaluator by
backward propagation with Eq. (9);

5: end while
6: Obtain a complementary topology matrix Ae;
7: Generate a feature matrix Af by kNN method in Eq. (10);
8: Construct a latent adjacency matrix Ap by confusing Ae

and Af using Eq. (11);
9: while not convergent or reaching ξ2 do

10: Compute HΦ1 and HΦ2 according to Eqs. (12) and (13);
11: if epochs % Γ == 0 then
12: Iterate over the row vectors from HΦ1 and HΦ2 ;
13: Select the i-th node satisfying maxv h

Φt
iv > δ and set

j = arg maxv h
Φt
iv (t = 1, 2) as pseudo labels;

14: Use the vectors of selected nodes from HΦ1 to form
an embedding Hp, and the pseudo labels build Yp;

15: Construct a pseudo adjacency matrix As with neigh-
bors belonging to the same pseudo labels;

16: Refine the latent adjacency matrix Ap by Eq. (14);
17: end if
18: Calculate Lssc and Len using Eqs. (21), (23) and update

trainable parameters with back propagation in Eq. (24);
19: end while
20: return Node embedding O.

IV. EXPERIMENTS

A. Experimental Setup

1). Datasets. In this subsection, we present an overview
of real-world datasets in our experiments, which contain six
different types of data so that the effectiveness of CGCN
framework can be measured from different fields. The six real-
world graph datasets are shown in Table III.

• Flickr: This dataset is constructed by forming links be-
tween shared Flickr public images, where nodes represent
users and edges stand for their relationships, which are
formed from the same location, gallery or collection, etc.

• ACM: It is a dataset where nodes represent papers and
edges express that two papers have the same author. It
can be used to conduct citation networks, paper content,
and other data integration studies.

• BlogCatalog: It is a social network constructed from the
BlogCatalog website, where nodes are made up of the
keywords of user profiles, and the labels represent the
topic categories provided by the authors.

• CoraFull: CoraFull is a citation network repository,
where nodes represent papers and edges stand for their
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TABLE II: Node classification performance (ACC% and F1%) on six datasets.

Datasets Metrics L/C GCN GAN-GCN GAT FA-GCN Scatter-GCN AM-GCN CG3-GCN CGCN

Flickr

ACC
20 54.30 73.20 43.10 60.11 48.35 74.28 63.50 81.10
40 67.00 76.70 47.30 68.53 59.50 78.92 65.30 83.20
60 69.80 77.50 51.36 71.05 64.51 81.06 66.30 83.60

F1
20 52.41 73.16 39.94 59.65 45.94 73.83 22.62 80.73
40 66.19 76.30 45.38 68.86 57.98 78.57 23.03 82.77
60 69.25 77.33 49.40 71.52 63.47 80.76 23.33 83.36

ACM

ACC
20 88.00 93.40 84.70 87.38 90.14 90.56 90.10 98.50
40 91.20 94.70 89.16 90.27 91.43 90.60 91.30 98.90
60 92.20 95.20 89.58 91.93 91.47 90.26 91.70 99.10

F1
20 88.01 93.30 84.75 87.38 90.18 90.64 47.15 98.49
40 88.50 94.63 89.08 90.21 91.46 90.65 46.58 98.88
60 92.23 95.15 89.71 91.93 91.53 90.31 46.71 99.08

BlogCatalog

ACC
20 85.70 79.50 60.54 82.30 70.44 82.58 32.20 91.50
40 88.50 82.70 63.14 81.72 75.18 85.38 85.30 91.90
60 89.30 84.20 67.32 84.77 79.23 86.56 83.70 92.50

F1
20 85.03 79.05 59.26 77.16 69.03 81.94 31.78 91.26
40 88.01 82.46 62.35 81.08 77.22 85.09 31.16 91.79
60 88.77 84.02 66.75 84.33 78.59 86.30 31.76 92.33

CoraFull

ACC
20 57.44 51.55 57.44 57.30 54.67 54.76 26.00 57.70
40 60.63 51.07 58.39 60.01 59.74 60.10 27.90 60.67
60 63.20 51.53 62.19 63.33 64.03 63.75 35.40 65.18

F1
20 57.04 51.07 56.68 56.10 46.82 51.05 11.63 57.13
40 58.38 48.55 56.89 58.61 48.84 52.12 12.48 59.39
60 60.48 48.99 58.62 59.33 50.09 52.32 18.91 61.42

Film

ACC
20 25.10 26.00 19.30 29.29 24.29 26.34 22.00 29.70
40 26.21 27.50 21.00 29.95 25.40 26.70 19.90 30.40
60 27.80 28.50 22.18 30.27 25.63 27.54 22.19 32.10

F1
20 24.48 25.43 19.18 24.23 23.06 17.95 20.33 28.15
40 25.89 27.09 20.66 24.70 24.45 20.95 21.24 29.84
60 27.10 28.58 21.90 26.18 24.57 21.39 21.08 31.19

Citeseer

ACC
20 70.30 64.90 68.32 67.23 68.42 71.22 69.00 72.60
40 71.61 69.50 71.24 71.30 70.26 73.40 72.00 74.70
60 72.86 69.90 71.30 72.33 71.25 74.20 73.00 74.90

F1
20 67.50 60.88 65.89 63.67 66.07 66.26 44.02 69.33
40 68.83 65.10 68.54 68.19 66.86 67.84 44.47 70.41
60 70.01 64.66 68.75 68.95 68.11 68.06 44.83 70.49

TABLE III: Statistical summary of test datasets.

Datasets # Nodes # Edges # Features # Classes

Flickr 7,575 239,738 12,047 9
ACM 3,025 13,128 1,870 3
BlogCatalog 5,196 171,743 8,189 6
CoraFull 19,793 65,311 8,710 70
Film 7,600 15,009 932 5
Citseer 3,327 4,732 3,703 6

citations. The nodes are labeled based on the paper topics.
It consists of 70 class distributions.

• Film: It is a film social network that describes the
relationships between films, and it contains 7, 600 nodes

and 171, 743 edges with 5 class distributions.
• Citeseer: This is a research paper citation network, where

nodes represent publications and edges stand for citation
links. Each link is described by a word vector that
indicates the presence or absence of the corresponding
word in the dictionary.

2). Baselines. We compare our proposed method with the
following state-of-the-art methods.

• GCN [9]: It is a semi-supervised graph convolutional
network which learns node representations by aggregating
information from neighbors.

• GAN-GCN: Instead of a traditional topology graph, we
use the complementary topology graph calculated by an
autoencoder with feature information as the input of GCN
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(a)  Flickr (b)  ACM (c) BlogCatalog

(d) Corafull (e) Film (f) Citeseer

Fig. 2: Convergence curves of training loss values, validation accuracy and test accuracy with CGCN on six datasets.

 (e) Scatter-GCN

 (c) GAT (a) GCN  (b) GAN-GCN  (d) FA-GCN

(f)  AM-GCN  (g) CG3-GCN  (h) CGCN

Fig. 3: T-SNE visualization of node classification results of compared methods on Flickr.

for comparison.
• GAT [47]: It is a convolution-style neural network that

uses an attention mechanism to propagate node relation-
ships and learn node features.

• FA-GCN [19]: It is a frequency adaptation graph convo-
lutional network which combines the low-frequency and
high-frequency signals for adapting to different tasks.

• Scatter-GCN [20]: Scatter-GCN is a semi-supervised
GCN-based framework which introduces neural pathways
that encode higher-order regularity on graphs.

• AM-GCN [27]: AM-GCN is a multi-channel model

which is able to learn suitable importance weights when
fusing topology and node feature information.

• CG3-GCN [28]: It is a GCN-based approach that designs
a semi-supervised contrastive loss and employs data sim-
ilarities to learn a transductive representation.

3). Parameter Setting. In our experiments, all parameter
settings of baselines are suggested by their papers. In order to
fully evaluate our model, we select three label rates (20/40/60
labels per class) for the training set, and randomly choose
500 and 1, 000 nodes as the validation set and the test
set, respectively. In the proposed model, the complementary
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(a) Flickr (c) ACM(b) Citeseer

Fig. 4: Influence of interval Γ of pseudo-labeling mechanism on Flickr, Citeseer and ACM.

(a) Flickr (c) ACM(b) Citeseer

Fig. 5: Parameter sensitivity (ACC% and F1%) of the proposed method w.r.t. η on Flickr, Citeseer and ACM.

topology adjacency matrix Ae is constructed by an autoen-
coder of 4 fully-connected layers with the neuron numbers
of encoders being (n, 256, 512, 1024) and decoders being
(1024, 512, 256, n). Besides, the evaluator also adopts 4 fully-
connected layers to assess the quality of the generative matrix,
where the hidden neuron numbers are (1024, 512, 128, 1). The
Sigmoid function is adopted as the neuron activation of the
last layer, and the rest layers use the ReLU function for the
autoencoder and evaluator. To extract feature information, we
apply kNN method to selecting the top 20 neighbors for each
node on the feature matrix, thereby constructing a feature
adjacency matrix Af . We adopt a 2-layer GCN with ReLU
function as the neuron activation of the first layer and Softmax
function of the last layer, where the dropout rate l is 0.5 and
the weight decay is 5×10−4. We fix the parameter η as 1. We
employ Adam optimizer to update learnable parameters with
learning rate lr = 1× 10−2 and weight decay as 5× 10−4 for
the autoencoder, evaluator and GCN model. In addition, we
select the confidence threshold as δ = 0.99 and η = 1.

The proposed CGCN framework is implemented with an
early-stop mechanism to avoid overfitting. Two well-known
metrics including accuracy (ACC) and macro F1-score (F1)
are employed for the performance evaluation.

B. Node Classification Results

We show the experimental results on six real-world datasets
in this subsection. The performance of all compared methods

with distinct numbers of labeled data is reported in Table II.
From experimental results, we draw some beneficial observa-
tions. First, compared with these baselines, CGCN generally
obtains the best performance on all datasets. Especially, our
method achieves a great improvement on Flickr, ACM, and
BlogCatalog datasets. These experimental results verify the
effectiveness of the proposed method. In addition, we observe
that the accuracy of GAN-GCN is better than that of GCN on
some datasets such as Flickr, Film, and ACM, which implies
that the representation capacity of the complementary graph
we constructed is more powerful than the natural topology
graph on specific scenes. Moreover, it also indicates that the
relationships combining topology and node spaces are often
more discriminative than those in the original topology space.
Consequently, a well-constructed joint framework with feature
and topology graphs can facilitate the ability of mining robust
and generalized representations.

Fig. 2 exhibits the training loss values and the accuracy
values of the validation set and test set on six datasets during
the training of the proposed algorithm. From the figure, it
can be seen that the training loss generally declines within
500 iterations, then it converges slightly on most datasets
except Film and Citeseer. The training loss on Film drops
continuously and finally becomes convergent, while the loss of
Citeseer drops considerably around 1, 000 iterations because of
the pseudo-labeling mechanism. Besides, we can also observe
that the validation accuracy and test accuracy rise as the
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(a) Flickr (b) Citeseer (c) ACM

ACC_ab

Fig. 6: Parameter sensitivity (ACC%) of the proposed method w.r.t. α and β on Flickr, Citeseer and ACM.

(a) Flickr (b) Citeseer (c) ACM

F1_ab

Fig. 7: Parameter sensitivity (F1%) of the proposed method w.r.t. α and β on Flickr, Citeseer and ACM.

(a) Flickr (b) Citeseer (c) ACM

ACC_r

Fig. 8: Parameter sensitivity (ACC%) of the proposed method w.r.t. λ and γ on Flickr, Citeseer and ACM.

(a) Flickr (b) Citeseer (c) ACM

F1_r

Fig. 9: Parameter sensitivity (F1%) of the proposed method w.r.t. λ and γ on Flickr, Citeseer and ACM.
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(c) ACM(a) Flickr (b) Citeseer

Fig. 10: Influence of the proposed method with the varying numbers of layers on Flickr, Citeseer and ACM.

(a) Flickr (c) BlogCatalog(b) ACM

(d) CoraFull (f) Citeseer(e) Film

Fig. 11: Ablation study of the proposed model on six datasets with ACC (%).

training loss goes down after 1, 000 iterations in Fig. 2 (a). One
reasonable explanation is that the proposed pseudo-labeling
mechanism improves the robustness of the CGCN model,
which has an encouraging effect on Citeseer dataset. The
validation accuracy and test accuracy also improve as the
training loss decreases on these real-world datasets.

To intuitively demonstrate the differences between CGCN
and other state-of-the-art GCN-based methods on classifi-
cation performance, Fig. 3 employs t-SNE to visualize the
classification results of all algorithms on Flickr. The figure
indicates that CGCN with suitable hyperparameter settings
assigns more accurate class labels, which reveals that the
framework of CGCN achieves leading performance in terms
of node classification and further validates its superiority
compared with other baselines.

C. Parameter Sensitivity Analyses
In this subsection, we conduct parameter sensitivity anal-

yses with ACC and F1 on ACM, Citeseer, and Flickr with

20 labeled samples per class to investigate the performance
variations of CGCN under different settings.

In order to observe the effect of the pseudo-labeling mech-
anism, we study the performance of CGCN by enabling
the pseudo-labeling mechanism after every certain amount of
epochs Γ in Fig. 4. Besides, we range the value of Γ from
5 to 2, 000. The reliability of the generated pseudo labels
depends on the stability of the proposed model. For ACM,
the performance of CGCN is better when applying pseudo-
labeling information and refining the generating adjacency
matrix every 50 epochs. It is because that the pseudo-labeling
information generated in the early stage is trustworthy and
helpful to improve the accuracy of the CGCN framework. For
Flickr and Citeseer, the accuracy increases when enabling the
pseudo-labeling mechanism every 500 to 1, 000 epochs. This
suggests that more training epochs are required to stabilize the
model and then produce more reliable pseudo information for
larger-scale datasets.

Fig. 5 presents the effect of the proportion of the unsu-
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pervised contrastive loss η ranging in
[
1× 10−5, 100

]
. It can

be seen that the performance rises slowly as the ratio of η
gradually increases to 1, and then the performance degrades.
This suggests that both the supervised contrastive loss and the
unsupervised contrastive loss leave comparable effects on the
proposed framework.

Next, we test the effect of α and β in
[
1× 10−3, 1

]
.

Fig. 6 and Fig. 7 present the accuracy and F1-score results
on three datasets. From the figures, we can observe that
the selection of these two hyperparameters has a noticeable
influence on classification performance. In general, the optimal
performance is achieved when β is fixed as a relatively small
value although the value of α varies largely. It validates the
effectiveness of the proposed topology adjacency matrix Ae,
which indicates that the deeper implicit topology information
is helpful for the improvement of the original data. Besides, the
classification accuracy is robust to these hyperparameters when
α is in a suitable range value on most datasets, indicating that
the complementary topology information has a greater effect
on small-scale datasets.

In order to check the impact of the weights λ and γ ranging
in
[
1× 10−3, 1

]
, we inspect the accuracy and F1-score of the

proposed CGCN in Fig. 8 and Fig. 9. From the observation, it
can be seen that small λ and γ often lead to poor accuracy in
most cases, especially significant for γ. Moreover, it achieves
better performance when a suitable γ is selected on Flickr and
ACM, which indicates that both the cross-entropy loss and the
semi-supervised contrastive loss have a positive impact. On
Flickr and Citeseer datasets, the accuracy fluctuates marginally
when γ < 0.1, indicating that choosing parameters tailored for
data is critical. Especially, satisfactory performance is gained
when the values of λ and γ are 0.5.

We also explore the influence of the varying numbers of
GCN layers in Fig. 10. From the figure, we can observe
that the model achieves the best performance with a two-
layer model. When only one layer is utilized, information
propagation may be insufficient owing to the shallow net-
work and inadequate parameters. Besides, it often causes
over-smoothing for a multi-layer model, thereby leading to
performance degradation.

D. Ablation Study

In order to validate the contribution of the proposed mod-
ules, we test the classification accuracy of CGCN with its
variants in Fig. 11. Our model is divided into three modules:
the self-adaptive adjacency matrix module, the contrastive loss
module, and the pseudo-labeling mechanism module. Because
the pseudo-labeling mechanism is used to refine the generative
adjacency matrix and input semi-supervised contrastive loss,
we use the superposition method for ablation.

Especially, CGCN-G represents the semi-supervised graph
convolutional network with the generative topology matrix.
CGCN-GC denotes that the original topology matrix and
the generative topology matrix are concurrently put into the
GCN model with shared parameters. CGCN w/o P is CGCN
without the pseudo-labeling mechanism and CGCN is the
complete model that contains the self-adaptive adjacency ma-

trix, the pseudo-labeling mechanism, and the semi-supervised
contrastive loss.

From Fig. 11, it is apparent that the classification accuracy
goes up when we stack modules one by one, which suggests
that each component of CGCN makes considerable contribu-
tions to boosting the performance of the node classification
task. Further, it also discloses that compared with the infor-
mation in the topology space, the learned graph representations
combining the feature space and topology space are more
discriminative in semi-supervised node classification. More-
over, experimental results also validate the effectiveness of
our modules. Therefore, the observation draws a conclusion
that the three components of CGCN are beneficial to the
performance promotion of semi-supervised classification tasks.

V. CONCLUSION

In this paper, we proposed a contrastive graph neural
network framework with a generative adjacency matrix which
considered the correlation between nodes and features. For
better capturing the complementary topology information and
fusing the node features, we designed a learnable self-adaptive
adjacency matrix refined by reliable pseudo information. In
addition, we utilized a joint self-supervised framework with
two mutually supervised GCNs to propagate graph embed-
dings across both topology and feature graphs, where the
semi-supervised contrastive loss was adopted to maximize
the consistency between the two networks. We also proposed
another pseudo-labeling strategy to enrich the supervision
information by generating reliable pseudo labels under the
mutual supervision of two networks. Experimental results on
benchmark datasets clearly demonstrated the superiority of
the proposed framework compared with other state-of-the-art
methods in semi-supervised classification tasks.
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