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The domain of multi-view semi-supervised classification is an appealing topic in real-world 
applications. Due to the powerful capability of gathering information from neighbors, Graph 
Convolutional Network (GCN) has become a hotspot in the classification task. However, most of 
multi-view classification works based on GCN only assign weights for feature fusion, and directly 
consider the weighted sum of the adjacency matrices, ignoring the interaction and correlation 
among features. These may be problematic since aggregating the matrices from less relevant 
views may destroy the original topology space, leading to undesired performance. To tackle the 
aforementioned challenges, this paper presents an Adaptive Multi-Channel Graph Convolutional 
Network (AMC-GCN). To extract the interactive information, AMC-GCN designs a deep interactive 
feature integration network to incorporate consensus and complementary information. To fuse 
the graph structures, AMC-GCN exploits the relevance between views and imposes an adjacency 
matrix fusion network on constructing multiple GCN channels, thereby delivering discriminative 
information on graphs. To enhance the homogeneity of the framework, AMC-GCN applies a con-

trastive loss to joint learning during the optimization for classification. With these considerations, 
AMC-GCN exploits relevant and interactive information between views to promote graph and 
feature fusion. Substantial experimental results on real-world datasets verify the superiority of 
AMC-GCN.

1. Introduction

In various real-world situations, multi-view data arises for the description of a large amount of data from diverse perspectives. 
Existing multi-view learning algorithms have achieved significant success across a wide spectrum of applications, including pattern 
recognition [1], [2], [3], computer vision [4], [5], [6], genetics [7], [8], [9] and data mining [10], [11], [12] etc. Numerous 
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Fig. 1. Description of the importance of topological homogeneity. The gray node and green node are a pair of heterogeneous nodes, indicating that the feature 
information is dissimilar. For each node (orange), a direct weighted sum of topology graphs may aggregate green node and gray node information after graph fusion, 
leading to inconsistent feature information aggregated by the orange node, thereby obtaining undesirable embedding representation.

graph-oriented methods have been widely explored in multi-view semi-supervised classification learning. Especially, multi-view 
classification is broadly applied to intelligent recognition systems, such as scene interpretation, objective recognition, and visual 
search. Many researchers have investigated the benefits of multi-view features by exploring the consistent information across different 
views [13], [14], [15], which demonstrated superior performance compared to using single-view features.

Besides, considering that graph convolutional network (GCN) [16] has the powerful ability to integrate feature attributes from 
neighbors, GCN has been widely explored in a multitude of practical applications. GCN successfully extends the convolutional neural 
network from Euclidean to non-Euclidean domains. It has been applied to model graph-structured data such as affinity matrices [17], 
[18] and citation networks [19], [20], [21]. Due to the powerful representation capabilities, prior works [16], [22] introduced GCN 
into multi-view learning, which validates that GCN can adaptively learn the spectral information from other complementary views. 
GCN naturally integrates feature information from topology graphs of each convolutional layer, thereby promoting the propagation 
of valid messages between neighbors in different views.

Although prior works [23], [22] have been successfully applied GCN to the multi-view classification task, limited study has con-

centrated on the relevance of different views, leading to suboptimal fusion of graphs and features for multi-view data. Moreover, 
[23], [22] only applied a direct weighted combination of the adjacency matrices via GCN to downstream tasks. However, as illus-

trated in Fig. 1, the topology graphs from different views represent distinct node relationships. A linear weighted sum of topology 
graphs without considering the relevance between views, may compromise the homogeneity of adjacency matrices, thereby causing 
the extraction of undesirable topology structures. In addition, these GCN-based methods propagated the original feature views sep-

arately via topology structures, omitting the potential interactive feature information. This is problematic because only propagating 
view-specific feature information and ignoring the interactive view information may be not enough for nodes to learn intact feature 
representations, thereby leading to undesired classification performance. Based on these, it is natural to consider exploring the rela-

tions of views and extracting potential interactive information between views to integrate similar connections for learning consistent 
node embeddings.

To cope with these issues, this paper proposes an Adaptive Multi-channel Contrastive Graph Convolutional Network (AMC-GCN) 
to jointly explore the relevance of graphs and interactive information between views for semi-supervised classification learning. As 
outlined in Fig. 2, AMC-GCN includes three primary modules. First, a deep interactive feature integrating network (DIF-network) 
is utilized to extract both view-specific information and deep interactive information from various views. It applies several neural 
networks to capture specific information from different views, and then obtains potential interactive information on the view-

specific attribute associations. Second, to integrate the relevant connection relationships, AMC-GCN explores the relations of views 
by designing an adaptive division strategy and introduces an adjacency matrix fusion network to integrate the relevant adjacency 
matrices of multiple graph channels. Finally, a multi-channel GCN network with semi-supervised contrastive loss (SC-network) is 
used to enhance the consistency among distinct topology graphs and perform the classification task. Overall, the main contributions 
of this study are outlined as follows:

• Propose a multi-channel graph convolutional network for capturing homogeneous node relationships and an intact feature 
representation. Specifically, the semi-supervised contrastive loss aims to enhance the graph consistency.

• Design an adjacency matrix fusion network with an adaptive division strategy to construct multiple graph channels by exploring 
the relevance between views and integrating topology graphs.

• Extract deep interactive information via a feature integration network, which enriches the underlying representations between 
views.

• Extensive experimental results on standard benchmark datasets demonstrate that the proposed method surpasses the perfor-

mance of other state-of-the-art graph-based methods in multi-view semi-supervised classification.

The rest of this paper is structured as follows. Section 2 reviews the related works. The proposed AMC-GCN framework is 
elaborated in Section 3. Section 4 presents substantial experiments to validate the effectiveness of AMC-GCN. Finally, Section 5
2

concludes the whole paper.
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Fig. 2. Architecture of the proposed AMC-GCN consisting of three modules. DIF-Network aims to extract view-specific and interactive information. AF-Network is 
designed to integrate the topology information to obtain multiple graph channels. SC-Network maximizes the consistency of distinct graphs.

2. Related work

Due to the powerful capability of GCN and the wide application of multi-view data, GCN-based multi-view semi-supervised clas-

sification has become increasingly demanding. This section reviews some notable research works on GCNs and multi-view learning.

2.1. Graph convolutional network

In recent years, graph convolutional network has gained popularity in the field of machine learning. Spectral convolutional 
networks [24] often utilize the Fourier domain to process convolutional operations on a graph signal s ∈ ℝ𝑛 and then apply a 
spectral filter g𝜃 = 𝑑𝑖𝑎𝑔(𝜃) to its spectral components, that is

g𝜃 ∙ s = U𝑔𝜃U𝑇 s, (1)

where ∙ is the graph convolutional operation, and U denotes the spectral decomposition of the normalized Laplacian operator. In 
order to simplify the feature decomposition complexity, Hammond et al. [25] employed Chebyshev polynomials to approximate 
the convolutional kernel of the spectral domain. To alleviate the problem of overfitting on the local graph structure, Kipf et al. [16]

utilized truncated Chebyshev polynomials and performed the first-order approximation for graph convolutional networks, formulated 
as

Z = 𝜎(D̃− 1
2 ÃD̃

− 1
2𝚯), (2)

where 𝜎(⋅) refers to an activation function, Ã = A + I𝑛 represents the adjacency matrix with self-loops, D̃𝑖𝑖 =
∑𝑛

𝑗=1 Ã𝑖𝑗 is the degree 
matrix from Ã, and 𝚯 stands for the trainable parameter matrix.

As GCN has shown the superior performance, numerous GCN variants [26], [27], [28] have been developed. Xu et al. [29] pro-

posed a novel answer-centric graph convolutional network with radial filters for visual processing tasks. Zhong et al. [30] introduced 
a graph-based contrastive framework that transformed the traditional instance-level conformity to the clustering tasks. Guo et al. [31]

developed a GCN-based approach to distribute information through the affinity matrix for the incorporation of correlated objects 
in the scene graph generation tasks. AM-GCN [32] and CG3 [33] established GCN-based methods that conveyed the valid message 
from neighbors to solve the limited supervision problem on node classification tasks. Besides, prior work Co-GCN [22] imposed a 
GCN-based model to cope with semi-supervised node classification on multi-view data. This approach utilized adaptive combined 
graph Laplacian matrices to explore graph information from views and optimized them through a co-training strategy. This paper 
also resorts to the GCN to cope with multi-view semi-supervised classification. In contrast to these GCN-based methods, AMC-GCN 
considers both the topology and feature fusion and the relevance of different views, while [22] only adopted a direct weighted sum 
of the topology matrices and then was applied to GCNs, thereby leading to undesirable connections and an incomplete representation 
3

with ignoring these problems.
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Table 1

A summary of primary notations in this paper.

Notations Explanations Notations Explanations

X(𝑣),A(𝑣) Feature and adjacency matrices of the 𝑣-th view. 
(𝑣) View-specific data.

𝛀,Y Labeled sample set and incomplete label matrix. Â
(𝑚)

Fused adjacency matrix of the 𝑚-th channel.

𝑓𝑣(⋅) The 𝑣-th fully connected network. C Correlation matrix.

W
(𝑣)
𝑙
,b

(𝑣)
𝑙
,W

(𝑣)
Φ ,b

(𝑣)
Φ Weights and biases of fully connected networks. 𝜶

(𝑣) Weight of the 𝑣-th adjacency matrix.

S(𝑣,�̂�) Interactive matrix of the 𝑣-th and �̂�-th views. 𝜋(𝑣) Weight of specific feature data.

H( 𝐿

2
,𝑣) Specific feature information in the 𝑣-th view. Z(𝑚) Output of the 𝑚-th channel GCN.

G(𝑣,�̂�) Interactive information the 𝑣-th and �̂�-th views. 𝑢𝑐 ,𝑠𝑐 Unsupervised and supervised losses.

Ŝ
𝑣

Interactive data in the 𝑣-th view. 𝑒𝑛 Cross-entropy loss.

2.2. Multi-view learning

As data exhibits complex and diverse forms, multi-view learning [34], [35], [36] has gained significant attention in various 
machine learning tasks. Recently, there has been a surge of interest in developing multi-view classification methods [37], [38], [39]. 
Especially, [40] proposed a deep multi-view learning model that learned a discriminant and shared view-invariant representation 
between multiple views. Li et al. [41] designed a multi-view generative framework that simultaneously learned to fuse features 
from multiple views for classification. [42] introduced a neural network model, which is designed to learn sparse regularizers in 
a data-driven manner. Yang et al. [43] employed the non-negative matrix factorization algorithm to compress the distribution of 
multi-view data for preserving the geometric structure of each view. To effectively leverage both the consensus and complementary 
characteristics of multi-view data, Jia et al. [44] proposed a method that integrated independence and adversarial similarities to 
enhance the discriminability and reduce the redundancy in the learned representation. Huang et al. [45] reconstructed a linear 
regressing model and learned a shared indicator matrix to ensure the diversity, and consensus of semi-supervised classification tasks. 
Lin et al. [49] proposed a dynamic graph label propagation model which jointly learned a relationship between the multi-graphs and 
labels based on GCN networks for classification tasks.

These approaches have been proposed to enhance the performance of multi-view learning. Despite the existence of various graph-

based semi-supervised classification methods, they ignored the topology relations between views, resulting in undesired performance. 
Based on this, we try to extract the topology graphs from different views and explores the correlations between them, thereby 
integrating the relevant graphs to ensure the homogeneity of graphs.

3. The proposed method

3.1. Overview and notation

For the purpose of exploring the interactive information between different views and learning graph fusion, we propose a multi-

channel contrastive graph convolutional network that comprises three main modules: the generation process of deep interactive 
feature information, the adjacency matrix fusion network with adaptive division strategy and the learnable GCN with contrastive 
loss. The framework first aims to capture deep interactive information from different feature views to ensure the consistency of 
multiple views. Then the nearest neighbor graphs are integrated through a fusion network to preserve the structure of the topology 
space. Finally, graph convolutional networks with a contrastive loss are used to maximize the consistency between graphs.

This paper employs the notation X(𝑣) ∈ ℝ𝑛×𝑑𝑣 to represent the multi-view data matrix for the 𝑣-th view (𝑣 ∈ [𝑉 ]), where 𝑛
represents the number of data samples, and 𝑑𝑣 denotes the feature dimension for the 𝑣-th view. Y ∈ ℝ|𝛀|×𝑐 denotes the incomplete 
label matrix generated from the labeled samples 𝛀, where |𝛀| ≪𝑛, and 𝑐 is the number of classes in the classification task. To ensure 
clear understanding of mathematical notations used in this paper, Table 1 provides explanations of the primary symbols.

3.2. Deep interactive feature integration network

To ensure the high coherence of multi-view data with varying dimensions, the proposed AMC-GCN first explores the underlying 
information from the multiple views to enhance complementarity before extracting the deep interactive information for the consensus 
of views. Therefore, we employ a set of autoencoders 

{
𝑓𝑣

}𝑉

𝑣=1 to capture specific feature information for each view. These networks 
aim to reduce the dimensionality of the original features 𝑑𝑣 to a common dimension 𝑑. Mathematically, the 𝑙-th layer output of the 
𝑣-th autoencoder is denoted as H(𝑙,𝑣),

H(𝑙,𝑣) = 𝜎

(
H(𝑙−1,𝑣)W(𝑣)

𝑙
+ b

(𝑣)
𝑙

)
, (3)

where H(𝑙,𝑣) is the 𝑙-th layer of 𝑓𝑣(⋅) with H(0,𝑣) = X(𝑣), 𝜎(⋅) denotes the activation function, and W(𝑣)
𝑙

∈ℝ𝑚𝑙−1×𝑚𝑙 and b(𝑣)
𝑙

∈ℝ𝑚𝑙 are 
layer-specific weight and bias, respectively. The loss function for the 𝑣-th view’s autoencoder is expressed as follows,
4


𝑣
𝑓
= ‖H(𝐿,𝑣) − X(𝑣)‖22. (4)
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Fig. 3. Construction of the interactive matrix. The interactive matrix S(𝑣,�̂�) is generated by the attribute interactive matrices in H

(
𝐿

2 ,𝑣

)
and H

(
𝐿

2 ,�̂�

)
.

To explore the consistency between different views, we extract the deep interactive data from view-specific features. The deep 
interactive information is produced through the inter-relationships of attributes between two views, where each view interacts with 
the other (𝑉 − 1) views to generate such information. As for the 𝑣-th view, we first calculate the interactive matrix S(𝑣,�̂�) between 

H

(
𝐿

2 ,𝑣

)
and H

(
𝐿

2 ,�̂�

)
, where H

(
𝐿

2 ,𝑣

)
is the output of the 𝐿2 -th layer in 𝑓𝑣, and �̂� ∈ [𝑉 ] ∖𝑣. Specifically,

S
(𝑣,�̂�)
𝑖

= h

(
𝐿

2 ,𝑣

)
𝑖

𝑇

⋅ h

(
𝐿

2 ,�̂�

)
𝑖

, 𝑖 ∈ [𝑛], (5)

where S(𝑣,�̂�)
𝑖

∈ℝ𝑑×𝑑 represents the correlation between the feature attributes of the 𝑖-th sample in S(𝑣,�̂�), and h
(

𝐿

2 ,𝑣

)
𝑖

∈ℝ1×𝑑 denotes 

the 𝑖-th row of H
(

𝐿

2 ,𝑣

)
. The attribute association of 𝑛 nodes consists of the interactive matrix S(𝑣,�̂�) ∈ℝ𝑛×𝑑×𝑑 shown in Fig. 3.

Then a deep neural network Φ is employed in S(𝑣,�̂�) to merge the attribute correlations between H
(

𝐿

2 ,𝑣

)
and H

(
𝐿

2 ,�̂�

)
, where �̂�

denotes other view except 𝑣. Thus the interactive information between the 𝑣-th view and the �̂�-th view meets G(𝑣,�̂�),

G(𝑣,�̂�) = Φ(𝑣𝑒𝑐(S(𝑣,�̂�))) = 𝜎

(
𝑣𝑒𝑐(S(𝑣,�̂�))W(𝑣)

Φ + b
(𝑣)
Φ

)
, (6)

where 𝑣𝑒𝑐 (⋅) presents the vectorization of the matrix, with transforming S(𝑣,�̂�) ∈ ℝ𝑛×𝑑×𝑑 to S(𝑣,�̂�) ∈ ℝ𝑛×𝑑2 . Here, W(𝑣)
Φ ∈ ℝ𝑑2×𝑑 and 

b
(𝑣)
Φ ∈ ℝ𝑛×𝑑 denote the weight and bias, respectively. Then we combine the 𝑖-th vector of (𝑉 − 1) interactive information to obtain 

the final interactive information Ŝ(𝑣) of the 𝑣-th view,

Ŝ
(𝑣) =

[
G(𝑣,1)‖⋯‖G(𝑣,𝑣−1)‖G(𝑣,𝑣+1)‖⋯‖G(𝑣,𝑉 )] , (7)

where Ŝ(𝑣) ∈ℝ𝑛×((𝑉 −1)×𝑑), and ‖ is the horizontal splicing of the matrix. Finally, by integrating both the specific information and the 
final interactive information in the 𝑣-th view, we obtain the consistent interaction matrix set { (𝑣)} with  (𝑣) ∈ℝ𝑛×(𝑉 ×𝑑),


(𝑣) =

[
H

(
𝐿

2 ,𝑣

)
, Ŝ

(𝑣)
]
, 𝑣 ∈ [𝑉 ] . (8)

3.3. Adjacency matrix fusion network with division strategy

For the purpose of exploring the potential topology information of the feature space, the adjacency matrices {A(1), ⋯ , A(𝑉 )} are 
initialized by the 𝑘-nearest neighbors from the 𝑉 original feature matrices. As for the complementarity of perspectives, each view 
has extra information that the others may not have. Based on this, we consider that the correlation between the feature information 
of each perspective is different, leading to the dissimilarity of the topology structures. Aggregating less correlated graphs may lead 
to topology homogeneity disruption. In addition, a simple linear combination of adjacency matrices may not be effective for multi-

view graph learning, because it may generate spurious links by fusing poorly correlated topology information, leading to suboptimal 
5

performance.
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To obtain more reliable topology structures, a natural idea is to aggregate the topology graphs as relevant as possible. Therefore, 
inspired by the division of the 𝑘-means method, we design an adaptive division strategy to divide multiple graph channels. To 
account for variations across different datasets, a relevance threshold 𝜃 is established for evaluation purposes. It is worth noting 
that the adaptive division strategy does not fix the number of clusters and uses cluster centroids to calculate the cluster-to-cluster 
correlation. It first defines the view-specific feature information as 𝑉 feature sets 𝑠𝑒𝑡𝑣 = {H

( 𝐿2 ,𝑣)}, with their centroids 𝑐𝑒𝑛𝑡𝑣 = Ĥ
(𝑣)

initialized as H( 𝐿2 ,𝑣)
. Then the correlation matrix in 𝑡-th iteration C(𝑡) ∈ ℝ𝑚(𝑡)×𝑚(𝑡)

is constructed by these centroids, where 𝑡 is the 
iteration step, 𝑚(𝑡) denotes centroid numbers, and 𝑐(𝑡)

𝑖𝑗
represents the relevance of the 𝑖-th and the 𝑗-th centroids. Specifically, we 

initialize the 𝑐(𝑡)
𝑖𝑗

in C(𝑡) as

𝑐
(1)
𝑖𝑗

= 𝑣𝑒𝑐

(
Ĥ
(𝑖)
)
⋅ 𝑣𝑒𝑐

(
Ĥ
(𝑗)
)𝑇

, (9)

where 𝑣𝑒𝑐(Ĥ(𝑖)) ∈ℝ1×(𝑛×𝑑). Then we select the highest correlation value 𝑐(𝑡)
𝑖𝑗

. If 𝑐(𝑡)
𝑖𝑗

≥ 𝜃, we merge the 𝑖-th and the 𝑗-th sets, and then 
the corresponding centroid becomes the average of the two centroids. The numbers of feature sets and centroids are reduced to one. 
We repeat the above steps until the maximum value 𝑐(𝑡)

𝑖𝑗
< 𝜃 or the maximum iteration Γ1 is reached. We obtain 𝑀 graph channels 

according to the 𝑀 merged feature sets with each channel containing the adjacency matrices. The detailed steps are presented in 
Algorithm 1. To fully integrate the topology graphs, a fusion network is proposed to combine the adjacency matrices for each graph 

Algorithm 1 The adaptive division strategy.

Input: View-specific features {H( 𝐿

2 ,1)
, ⋯ , H( 𝐿

2 ,𝑉 )}, threshold 𝜃, maximum interaction Γ1 .

Output: 𝑀 merged feature sets {𝑐ℎ𝑔

}𝑀

𝑔=1 .

1: Initialize 𝑠𝑒𝑡𝑣 = {H( 𝐿

2 ,𝑣)} and 𝑐𝑒𝑛𝑡𝑣 = Ĥ
(𝑣)

as H( 𝐿

2 ,𝑣) ;

2: for 𝑡 = 1 → Γ do

3: Construct correlation matrix C(𝑡) using Eq. (9);

4: Select maximum value 𝑐(𝑡)
𝑖𝑗

from C(𝑡) ;

5: if 𝑐
(𝑡)
𝑖𝑗

≥ 𝜃 then

6: Merge 𝑠𝑒𝑡𝑖 ← 𝑠𝑒𝑡𝑖 ∪ 𝑠𝑒𝑡𝑗 ;

7: Update 𝑐𝑒𝑛𝑡𝑖 ← (𝑐𝑒𝑛𝑡𝑖 + 𝑐𝑒𝑛𝑡𝑗 )∕2;

8: Delete 𝑠𝑒𝑡𝑖 , 𝑠𝑒𝑡𝑗 , 𝑐𝑒𝑛𝑡𝑖 , 𝑐𝑒𝑛𝑡𝑗 , update 𝑠𝑒𝑡𝑖 , 𝑐𝑒𝑛𝑡𝑖 ;
9: else[𝑐

(𝑡)
𝑖𝑗

< 𝜃]

10: Break;

11: end if

12: end for

13: Return 𝑀 merged feature sets {𝑐ℎ𝑔

}𝑀

𝑔=1 .

channel. Considering that each node has a different influence on their combinations, and there are still various correlations between 
different views after division, we employ a network to learn their importance and fuse them. Therefore, we focus on an adjacency 
matrix A(𝑚𝑗 ) in a graph channel 𝑐ℎ𝑔 = {A(𝑚1), A(𝑚2), ⋯ , A(𝑚𝐼 )} with 𝑗 ∈ [𝐼] and 𝑔 ∈ [𝑀]. Based on this, a neural network is adopted 
to obtain the weight value of the 𝑖-th node in A(𝑚𝑗 ),

𝑤
(𝑚𝑗 )
𝑖

= 𝑡𝑎𝑛ℎ

(
a
(𝑚𝑗 )
𝑖

W𝑓1
+ b𝑓1

)
W𝑓2

+ b𝑓2
, (10)

where a(𝑚𝑗 )
𝑖

∈ℝ1×𝑛 is the 𝑖-th row of A(𝑚𝑗 ), W𝑓1
∈ℝ𝑛×𝑛′ , W𝑓2

∈ℝ𝑛′×1, b𝑓1
∈ℝ1×𝑛′ and b𝑓2

∈ℝ1×1 denote weights and biases of the 
first and second layers, respectively. Similarly, we acquire the weight values for the 𝑖-th node of the other adjacency matrices in the 
same graph channel. Then a softmax function is employed to normalize the weight values to obtain the final weight of the 𝑖-th node,

𝛼
(𝑚𝑗 )
𝑖

=
exp(𝑤(𝑚𝑗 )

𝑖
)∑

𝑡∈[𝐼] exp(𝑤
(𝑚𝑡)
𝑖

)
, (11)

where the value of 𝛼(𝑚𝑗 )
𝑖

is positively correlated with the importance of the 𝑖-th node of A(𝑚𝑗 ). For all 𝑛 nodes in A(𝑚𝑗 ), we obtain 
the learnable weights 𝜶(𝑚𝑗 ) = [𝛼(𝑚𝑗 )

1 , ⋯ , 𝛼(𝑚𝑗 )
𝑛 ] with 𝜶(𝑚𝑗 ) ∈ℝ1×𝑛. We combine all the matrices in the graph channel 𝑐ℎ𝑔 to obtain the 

final matrix Â(𝑔)
,

Â
(𝑔) =

∑
𝑡∈[𝐼]

𝑑𝑖𝑎𝑔(𝜶(𝑚𝑡)) ⋅ A(𝑚𝑡). (12)

Thus we obtain 𝑀 merged adjacency matrices {Â
(1)

, ⋯ , Â(𝑀)} and apply them to GCNs.

3.4. Learnable GCN with semi-supervised contrastive loss

In this subsection, we introduce the learnable GCN designed to automatically obtain potential feature representation with 
consistency and complementarity of multiple views. The adaptive weighted sum of view-specific feature matrices with consistent 
6

information can be defined as
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̂ =
𝑉∑
𝑣=1

𝜋(𝑣)


(𝑣), (13)

where 𝜋(𝑣) is a learnable weight coefficient meeting 
∑𝑉

𝑣=1 𝜋
(𝑣) = 1. Therefore, we employ a softmax function for each epoch,

𝜋(𝑣) =
exp(𝜋(𝑣))∑𝑉

𝑣=1 exp(𝜋(𝑣))
. (14)

Exploring relationships between related nodes through a shared feature matrix can obtain global relationships. Based on this, we 
employ a 2-layer GCNs {Ψ𝑚}𝑀𝑚=1 on 𝑀 graph channels with the shared feature representation ̂ ,

Z(𝑚) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(
Â
(𝑚)

𝜎

(
Â
(𝑚)

̂W(1)
𝑔

)
W(2)

𝑔

)
, (15)

where Z(𝑚) is the probability matrix of the 𝑚-th channel for any 𝑚 ∈ [𝑀]. Trainable weights W(1)
𝑔 and W(2)

𝑔 are shared in distinct 
topology graphs to extract the shared information.

We employ a semi-supervised contrastive loss which is a combination of both supervised and unsupervised contrastive losses 
to enhance the consistency between distinct topology graphs. As for the probability matrices Z(Φ1) and Z(Φ2), the unsupervised 
contrastive loss is defined as

𝑢𝑐 =
1
2𝑛

𝑛∑
𝑖=1

(

Φ1
𝑢𝑐

(
x̂𝑖

)
+

Φ2
𝑢𝑐

(
x̂𝑖

))
, (16)

where Φ1, Φ2 represent different graph channels, x̂𝑖 is the 𝑖-th node, Φ1
𝑢𝑐 (⋅) and Φ2

𝑢𝑐 (⋅) denote the unsupervised contrastive losses of 
the Φ1-th and Φ2-th channels, respectively. Specifically, Φ1

𝑢𝑐 (x̂𝑖) can be measured by:


Φ1
𝑢𝑐

(
x̂𝑖

)
= −log

exp
(

z
Φ1
𝑖

⋅ z
Φ2
𝑖

𝑇
)

∑𝑛

𝑗=1 exp
(

z
Φ1
𝑖

⋅ z
Φ2
𝑗

𝑇
) , (17)

where zΦ𝑖

𝑘
∈ℝ1×𝑐 is the 𝑘-th row vector of ZΦ𝑖 . Similarly, Φ2

𝑢𝑐 (x̂𝑖) can be calculated as:


Φ2
𝑢𝑐

(
x̂𝑖

)
= −log

exp
(

z
Φ2
𝑖

⋅ z
Φ1
𝑖

𝑇
)

∑𝑛

𝑗=1 exp
(

z
Φ2
𝑗

⋅ z
Φ1
𝑖

𝑇
) . (18)

Furthermore, to integrate the limited yet trustworthy labels, the supervised contrastive loss of X̂𝑖 ∈𝛀 is defined as:

𝑠𝑐 =
1

2|𝛀|
|𝛀|∑
𝑖=1

(

Φ1
𝑠𝑐 (x̂𝑖) +

Φ2
𝑠𝑐

(
x̂𝑖

))
. (19)

In general, the supervised contrastive losses for x̂𝑖 belonging to 𝑙 labeled samples are computed by:


Φ1
𝑠𝑐

(
x̂𝑖

)
= −log

∑|𝛀|
𝑘=1 l[𝑟Φ1

𝑖
=𝑟Φ2

𝑘
]
exp

(
z
Φ1
𝑖

⋅ z
Φ2
𝑘

𝑇
)

∑|𝛀|
𝑗=1 exp

(
z
Φ1
𝑖

⋅ z
Φ2
𝑗

𝑇
) , (20)


Φ2
𝑠𝑐

(
x̂𝑖

)
= −log

∑|𝛀|
𝑘=1 l[𝑟Φ2

𝑖
=𝑟Φ1

𝑘
]
exp

(
z
Φ2
𝑖

⋅ z
Φ1
𝑘

𝑇
)

∑|𝛀|
𝑗=1 exp

(
z
Φ2
𝑖

⋅ z
Φ1
𝑗

𝑇
) , (21)

where 𝑟Φ1
𝑖

represents the predictive class of 𝑧Φ1
𝑖

and l[⋅] is equal to 1 if 𝑟Φ1
𝑖

= 𝑟
Φ1
𝑘

, and 0 otherwise. By integrating both the unsuper-

vised and the supervised contrastive losses, we obtain the semi-supervised contrastive loss,

𝑠𝑠𝑐 =𝑢𝑐 + 𝜆𝑠𝑐 , (22)
7

where 𝜆 is a hyperparameter. Therefore, the semi-supervised contrastive loss for the 𝑀 graph channels is,
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̂𝑠𝑠𝑐 =
𝑀−1∑
𝑖=1

𝑀∑
𝑗=𝑖+1

𝑠𝑠𝑐 . (23)

3.5. Model training

For acquiring an overall output Ẑ, we aggregate the embeddings {Z(𝑚)}𝑀
𝑚=1 for capturing information of feature topology space 

as,

Ẑ =
𝑀∑
𝑚=1

𝛽(𝑚)Z(𝑚), (24)

where 𝛽(𝑚)𝑀
𝑚=1 is an adjustable hyperparameter set with 

∑𝑀

𝑚=1 𝛽
(𝑚) = 1. Besides, to measure the dissimilarity between the output Ẑ

and the ground truth Y, we employ the cross-entropy loss as follows,

𝑒𝑛 = −
∑
𝑖∈𝛀

𝑐∑
𝑗=1

Y𝑖𝑗 𝑙𝑛Ẑ𝑖𝑗 . (25)

The overall loss function of the proposed method is given by

 =𝑒𝑛 + 𝛾̂𝑠𝑠𝑐 , (26)

where hyperparameter 𝛾 is used to control the importance of 𝑠𝑠𝑐 and 𝑒𝑛. To sum up, the procedure for AMC-GCN is elaborated in 
Algorithm 2.

Algorithm 2 Adaptive multi-channel contrastive graph convolutional networks (AMC-GCN).

Input: Multi-view data {X(𝑣)}𝑉
𝑣=1 , label matrix Y ∈ℝ𝑙×𝑐 , maximum iterations Γ1 , Γ2 and threshold 𝜃.

Output: Output Ẑ.

1: Initialize learnable weights 
{
𝜋(𝑣) = 1

𝑉

}𝑉

𝑣=1
;

2: # Obtain view-specific information;

3: Initialize adjacency matrices {A(𝑣)}𝑉
𝑣=1 via 𝑘NN;

4: while not convergent do

5: for 𝑣 = 1 → 𝑉 do

6: Compute H( 𝐿

2 ,𝑣) and H(𝐿,𝑣) using Eq. (3);

7: Calculate the loss function by (4);

8: end for

9: end while

10: # Integrate graph channels;

11: Initialize 𝑠𝑒𝑡𝑣 = H( 𝐿

2 ,𝑣) and 𝑐𝑒𝑛𝑡𝑣 = H( 𝐿

2 ,𝑣) for 𝑣 ∈ [𝑉 ];
12: for 𝑡 = 1 → Γ1 do

13: Update C(𝑡) and select maximum value 𝑐(𝑡)
𝑖𝑗

in Eq. (9);

14: if 𝑐
(𝑡)
𝑖𝑗

≥ 𝜃 then

15: Merge 𝑠𝑒𝑡𝑖 ← 𝑠𝑒𝑡𝑖 ∪ 𝑠𝑒𝑡𝑗 ;

16: Construct 𝑐𝑒𝑛𝑡�̂� ← (𝑐𝑒𝑛𝑡𝑖 + 𝑐𝑒𝑛𝑡𝑗 )∕2;

17: Delete 𝑠𝑒𝑡𝑖 , 𝑠𝑒𝑡𝑗 , 𝑐𝑒𝑛𝑡𝑖 , 𝑐𝑒𝑛𝑡𝑗 , update 𝑠𝑒𝑡𝑖 , 𝑐𝑒𝑛𝑡𝑖 ;
18: else[𝑐

(𝑡)
𝑖𝑗

< 𝜃]

19: break;

20: end if

21: end for

22: Obtain 𝑀 merged feature sets;

23: # Compute predictive representations;

24: while do not convergence or reach Γ2 do

25: for 𝑣 = 1 → 𝑉 do

26: Acquire { (𝑣)} by Eq. (8);

27: end for

28: Compute consistent feature matrix ̂ by Eq. (13);

29: for 𝑚 = 1 →𝑀 do

30: Z(𝑚) = Ψ𝑚

(
Â(𝑚), ̂

)
by Eq. (15);

31: end for

32: Calculate the loss function by Eq. (26);

33: end while

34: Return Output Ẑ.

We also analyze the computational complexity of AMC-GCN. Generally, the proposed AMC-GCN can be divided into three compo-

nents: DIF-Network, AF-Network and SC-Network. Specifically, the computational complexity of DIF-Network costs 
∑𝑉

𝑣=1(𝑛𝑑𝑑𝑣 +
𝑛𝑑2), AF-Network processing consumes (𝑛𝑑𝑉 2), and SC-Network takes (𝑀(𝑛2𝑑 + 𝑛𝑑𝑐)). Owing to 𝑑𝑣 ≈ 𝑑, 𝑐 ≪ 𝑑 and 𝑀 ≤ 𝑉 , the 
8

total computational complexity of AMC-GCN requires (𝑉 𝑛𝑑(𝑑 + 𝑉 )).
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Table 2

A brief description of all test multi-view datasets.

Datasets # Samples # Views # Features # Classes Data Types

BBCsports 544 2 3,183∕3,203 5 Textual documents

BBCnews 685 4 4,659∕4,633∕4,665∕4,684 4 Textual documents

ALOI 1,079 4 64∕64∕77∕13 10 Object images

Caltech7 1,474 6 48∕40∕254∕1,984∕512∕928 7 Object images

HW 2,000 6 153∕596∕301∕481∕157∕27 10 Digit images

MNIST7K 7,000 3 30∕9∕30 7 Digit images

Hdigit 10,000 2 784∕256 10 Digit images

NoisyMNIST 15,000 2 784∕784 10 Digit images

Fig. 4. Samples from three image datasets.

4. Experiments

4.1. Experimental setup

1). Datasets. In the subsection, we evaluate the performance of AMC-GCN on eight multi-view datasets for the semi-supervised 
classification task. These datasets cover three different applications, including news article categorization, generic object detection, 
and digit classification, which are shown in Table 2. Fig. 4 illustrates the several samples from the selected image datasets.

• BBCsports comprises 544 documents sourced from the BBC sport website. Each document has 2 types of features, with dimen-

sions of 3, 183 and 3, 203.

• BBCnews is a dataset which contains 685 documents. 4 feature views are presented with 4, 659-D politics, 4, 633-D entertain-

ments, 4, 665-D business sports, and 4, 684-D technology fields.

• ALOI is a colorful image dataset that contains 1, 079 objects for capturing the variations in object recordings. The dataset has 4
multi-view features including 64-D RGB color histograms, 64-D HSV color histograms, 77-D color similarities, and 13-D Haralick 
features.

• Caltech7 is a widely used image dataset consisting of 7 classes. There are 6 representations, namely 48-D Garbor features, 40-D 
Wavelet Moments, 254-D CENTRIST features, 1, 984-D HOG features, 512-D GIST features, and 928-D LBP features.

• HW is a handwriting image dataset with 2, 000 samples and 10 categories. Feature views contain 153-D Profile-correlation 
features, 596-D Fourier-coefficients, 301-D Karhunen-Loeve-coefficients, 481-D intensity-avarages, 157-D Zernike Moments, and 
27-D Morphological features.

• MNIST7K is an extended digit image dataset of MNIST, which has 7, 000 data points and 7 classes, with multi-view features as 
30-D, 9-D, and 30-D, respectively.

• Hdigit has 10, 000 image samples with 10 categories, which were crawled from the UCI repository. Its feature dimensions are 
presented with 784-D and 256-D, respectively.

• NoisyMNIST consisting of 15, 000 data points employs the original images as a feature view, and randomly selects within-class 
images with white Gaussian noise as another view, with their dimensions being 784-D and 784-D, respectively.

2). Baselines. To validate the efficacy of AMC-GCN, we conduct a comparative study with other state-of-the-art approaches for 
semi-supervised classification in the multi-view setting. A succinct overview of each method is provided below.

• MVAR [46] employs 𝓁2,1 matrix norm to regularize the loss function and balances the contributions of each view using adaptive 
weights to enhance the classification performance.

• MLAN [13] is a unified model which performs unsupervised multi-view clustering and semi-supervised classification tasks 
concurrently without requiring explicit weights and penalty parameters.

• MvNNcor [47] is a multi-view modeling framework which leverages the specific features and interactive information of views 
9

through a well-designed multi-view loss function to accurately predict the categories of the data.
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Table 3

Classification performance of all compared semi-supervised classification methods with 10% labeled samples as supervision, where the 
best performance is highlighted in bold and the second best result is underlined.

Metrics Datasets/Methods MVAR MLAN MvNNcor Co-GCN ERL-MVSC LGCN IMv-GCN AMC-GCN

ACC BBCsports 73.03 64.01 88.33 86.31 88.08 97.00 95.11 97.56

BBCnews 75.71 72.74 83.33 86.41 85.21 88.00 90.35 90.44

ALOI 66.36 84.42 94.38 96.53 85.61 96.90 72.55 97.21

Caltech7 84.99 59.23 94.19 92.57 93.54 85.82 72.55 94.19

HW 82.25 96.05 96.04 92.44 89.93 92.83 95.61 97.78

MNIST7K 90.06 89.31 94.68 93.43 95.35 93.86 93.75 97.10

Hdigit 81.08 98.28 98.29 92.36 95.47 72.70 98.12 98.98

NoisyMNIST 71.01 10.52 24.20 83.52 82.52 51.90 87.10 88.05

F1 BBCsports 69.15 63.33 87.10 86.24 62.89 96.96 94.93 97.60

BBCnews 71.08 72.81 79.10 85.92 60.14 87.89 89.35 89.97

ALOI 62.01 84.65 93.60 96.51 71.50 96.91 69.28 97.23

Caltech7 48.51 58.77 76.60 0.92 59.44 37.28 69.28 76.64

HW 42.22 96.04 95.70 92.44 74.94 92.92 95.62 97.78

MNIST7K 89.80 88.43 94.30 93.36 74.11 93.75 93.63 97.04

Hdigit 76.59 98.28 97.70 92.36 79.56 68.91 98.12 98.98

NoisyMNIST 70.89 10.68 21.50 83.41 82.01 45.24 86.53 87.67

• Co-GCN [22] is a new graph convolutional network method that integrates both co-training and spectral information into the 
framework. Co-GCN adaptively exploited graph information from different views by combining Laplacian matrices.

• ERL-MVSC [45] utilizes a linear regression model and a shared indicator matrix regularized by 𝓁2,1-norm to achieve diverse, 
sparse, and consistent representation learning for classification tasks.

• LGCN [48] is a learnable neural network framework which solves the multi-view learning problem by incorporating several 
sparse autoencoders and a fully-connected network to integrate features and views.

• IMv-GCN [23] is a new multi-view classification neural network framework that utilizes a graph filter and an orthogonal 
normalization to enhance the interpretability of GCN-based classification models.

Among the above methods, Co-GCN, LGCN and IMv-GCN are GCN-oriented methods, and the rest compared approaches are graph-

oriented algorithms. It is noted that there are still few GCN-based methods involved in the existing researches, which indicates that 
limited work has focused on GCN contributing to the semi-supervised classification task on multi-view data.

3). Parameter Setting. In the experiment, we adopt all parameter settings recommended by the corresponding papers for all 
baselines. To comprehensively assess the proposed model, we set the labeled node rate to 10% per class in the training set, and the 
remaining nodes are designated as the test set. As for AMC-GCN model, the view-specific feature information is constructed by the 
autoencoders 

{
𝑓𝑣

}𝑉

𝑣=1 with the number of latent representations being (400,200). To validate the output value within certain limits, 
we set 𝜎(⋅) as the ReLU function. To maximize the consistency of feature attributes of G(𝑣,�̂�), we employ one fully-connected layer 
with (400,200). The initial adjacency matrices {A𝑣}𝑉

𝑣=1 are constructed by 𝑘NN method with 𝑘 = 10. We adopt a 2-layer GCN with 
the weight decay as 5 × 10−4, and the first layer’s neuron activation is computed by RelU activation function. We utilize the Adam 
optimizer to optimize the learnable parameters with a fixed learning rate of 1 × 10−2, and we set the hyperparameter 𝜆 to 1. Because 
of the variation of different datasets, for BBCnews, BBCsports, HW, and ALOI, we choose correlation threshold 𝜃 as 10, 10, 30, 40, and 
the rest are 0.

We utilize two well-known metrics including Accuracy (ACC) and macro F1-score (F1) for performance evaluation. To investigate 
the classification performance of different algorithms, we compare all the methods with 10% labeled samples for training. We conduct 
experiments with fixed epochs of 2, 000 and randomly selected labeled data for each dataset, and report the classification accuracy 
(ACC) and F1-score (F1). In this paper, the proposed framework is implemented using PyTorch and executed on a computer equipped 
with an AMD R9-5900X CPU, Nvidia RTX 3060 GPU, and 48 GB RAM.

4.2. Experimental results

Classification results. To visually compare the classification capability of AMC-GCN with other state-of-the-art methods, we 
exhibit the experimental results on eight graph datasets in Table 3. The experimental results demonstrate that the proposed AMC-GCN 
achieves remarkable classification performance on all test datasets. Notably, AMC-GCN outperforms these graph-oriented methods, 
especially on BBCnews and BBCsports. This discovery suggests that AMC-GCN has a more robust ability to propagate node attributes 
and leverage structural information from diverse perspectives. Compared with GCN-based methods, AMC-GCN shows significant 
performance improvements on the Caltech7, HW, MNIST7K, and Hdigit datasets. This indicates that the proposed AMC-GCN can 
learn more discriminative node relationships and graph information to extract feature representations on both small and large 
datasets, thereby verifying the efficacy of the proposed graph and feature fusion approaches.

Fig. 5 depicts the performance of all compared methods at different label ratios, varying from 1% to 10%. The results indicate 
10

that AMC-GCN achieves satisfactory performance with relatively small amounts of supervision, outperforming other methods that 
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Fig. 5. Performance comparison (ACC%) of various methods as the ratio of labeled data ranges in {0.01,0.02,⋯ ,0.1}.

Fig. 6. Comparison (ACC%) of AMC-GCN with fused multi-view and single-view features on all datasets.

need more supervision to attain comparable classification capacity. This highlights that AMC-GCN has a superior capacity for label 
utilization in the case of scarce label information and can effectively utilize the supervision information and propagate them to 
unlabeled data. The obtained results reinforce the competitive performance of AMC-GCN compared to other state-of-the-art methods, 
which aligns with the purpose of semi-supervised classification. This emphasizes the importance of a well-designed contrastive 
framework that integrates both feature and topology information to enhance the capacity for extracting robust and generalized 
representations.

Single-view baseline comparison. Fig. 6 presents the classification ability of AMC-GCN with fused multi-view and single-view 
information on all test datasets, respectively. From observation, we can find that AMC-GCN with fused multi-view information 
consistently outperforms the single-view-based methods in terms of classification accuracy. The findings further suggest that the 
proposed method can effectively integrate multiple views to leverage the consensus and complementary information for improving 
11

learning performance.
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Fig. 7. T-SNE visualization of data distributions with different compared methods on MNIST7K with 10% ratio labeled samples.

Fig. 8. Visualization of learned weights with distinct views by AMC-GCN on BBCnews, ALOI, Caltech7, HW datasets.

Fig. 9. Comparison of AMC-GCN with different division of graph channels (of which #01∕23 denotes that AMC-GCN divides two graph channels containing the 
information of view 0 and view 1, view 2 and view 3, respectively. Especially, ⋆ is the graph channels divided by the adaptive division strategy in AMC-GCN).

Visualization of classification performance. To intuitively depict the classification performance of different algorithms, Fig. 7

exhibits scatter plots with 10% label ratio on MNIST7K. The figures indicate that our AMC-GCN method achieves more consistent 
class assignments compared to the ground truth, thus confirming the superiority of AMC-GCN. Besides, Fig. 8 presents the learned 
weights of different feature views on AMC-GCN on BBCnews, ALOI, Caltech7, HW datasets. The learned weight of each view indicates 
that each view of datasets provides the proportion of valuable feature information and the degree of contribution for classification 
tasks. The reason may be that different views are described from different perspectives on the same data, leading to provision of 
diverse valid feature representations. To validate the effectiveness of the adaptive division strategy, the proposed AMC-GCN also 
12

compares the performance with other graph channel division strategy. In addition, Fig. 9 exhibits that the different division of graph 
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Table 4

Ablation study of the proposed AMC-GCN on all test datasets, where ACC% and F1% are 
recorded.

Datasets / Methods GCN-fusion IA-GCN IMC-GCN AMC-GCN

BBCsports 82.04 (83.80) 93.08 (92.83) 95.72 (95.58) 97.56 (97.60)

BBCnews 74.88 (73.26) 88.01 (88.04) 88.66 (88.06) 90.44 (89.97)

ALOI 84.00 (83.90) 84.24 (84.36) 95.05 (95.05) 97.21 (97.23)

Caltech7 91.63 (70.89) 91.68 (71.55) 93.74 (76.14) 94.19 (76.64)

HW 95.67 (95.66) 95.67 (95.69) 95.69 (95.69) 97.78 (97.78)

MNIST7K 86.10 (87.41) 95.95 (95.88) 96.30 (96.24) 97.10 (97.04)

Hdigit 86.79 (88.16) 94.09 (94.08) 98.16 (98.16) 98.98 (98.98)

NoisyMNIST 84.41 (84.17) 85.79 (85.87) 87.92 (87.69) 88.05 (87.67)

Fig. 10. Convergence curves of semi-supervised contrastive loss values and cross-entropy loss values on all datasets.

channels, from which we observe that the accuracy divided by the adaptive division strategy in AMC-GCN achieves the optimal 
performance, validates the fusion of topology graphs using the adaptive division strategy.

4.3. Model analysis

Ablation study. In order to assess the contribution of the proposed models, we conduct experiments to evaluate the classification 
ability of AMC-GCN with its variants on all datasets. Specifically, we test the accuracy of GCN-fusion [16] as a baseline, since the orig-

inal model cannot directly apply to multi-view classification task, we achieve this by calculating the average adjacency matrix during 
graph convolutions. We also compare the performance of IA-GCN based on GCN-fusion, which learns the deep interactive informa-

tion between views and then combines the average adjacency matrix to a graph convolutional network. IMC-GCN is constructed on 
IA-GCN, which employs an adjacency matrix fusion network to integrate relevant topology structures instead of averaging topology 
structures, then applies multi-channel graph convolutional networks to the classification tasks. Moreover, the AMC-GCN framework 
further adds the semi-supervised contrastive loss on the basis of IMC-GCN. Table 4 presents the results of ablation study. The results 
demonstrate that AMC-GCN significantly enhances the performance of the framework, indicating that each constituent of AMC-GCN 
plays a important role in the semi-supervised node classification task. This may account for the reason that AMC-GCN completes the 
intact representation of different views, and maximizes the homogeneity of views, which reduces the impact of noise generated by 
the complementarity of different views. Moreover, the performance evaluation also confirms the efficacy of the semi-supervised loss 
in enhancing the classification accuracy.

Convergence validation. Fig. 10 presents the convergence of AMC-GCN on eight real-world datasets with 10% labeled samples. 
To enhance the analysis, we visualize the values of both the semi-supervised contrastive loss and the cross-entropy loss within a 
13

single figure. Several valuable insights can be drawn from these plots. First, the value of 𝑠𝑠𝑐 drops rapidly within 200 iterations 
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Fig. 11. Parameter sensitivity of AMC-GCN w.r.t. 𝛽(𝑚),𝑚 = 1 on BBCsports and Hdigit.

Fig. 12. Parameter sensitivity (ACC %) of AMC-GCN w.r.t. 𝜆 and 𝛾 on all datasets.

and then stabilizes during subsequent iterations. This can be explained by the fact that the semi-supervised contrastive loss promotes 
consistency between different topology graphs by sharing feature representations composed of consensus and interactive informa-

tion. Second, the loss value of 𝑒𝑛 decreases smoothly during the training process on most datasets except MNIST7K, Hdigit and 
NoisyMNIST, attributed to the fact of the instability of the model in the initial training iterations. Then the proposed AMC-GCN tends 
to be convergent in the late iterations. Besides, the loss value of 𝑒𝑛 in NoisyMNIST jitters dramatically, but it converges generally. 
This may be that it is inherently noisy, resulting in a relatively large magnitude of loss during training. Generally, the analysis of 
𝑠𝑠𝑐 and 𝑒𝑛 emphasizes the effectiveness and stable convergence of AMC-GCN.

Parameter sensitivity. We conduct parameter sensitivity analysis to examine the performance changes of the proposed method 
under different parameter settings. 𝛽(𝑚) is a hyperparameter ranging in [0, 1]. The value of 𝛽(𝑚) is positively correlated to the 
importance of for the 𝑚-th graph channel. From Fig. 11, we can observe that satisfactory performance emerges for 𝛽(1) values within 
the range of [0.5, 0.8]. This further underscores the effectiveness of the proposed adaptive division strategy. In addition, Fig. 12

presents the parameter sensitivity of 𝜆 and 𝛾 in 
[
10−5,102

]
with 10% labeled samples on eight real-world datasets. From the figures, 

some observations are shown below. First, the optimal values for AMC-GCN are achieved when 𝜆 = 1 across all datasets. This suggests 
that both the supervised and unsupervised contrastive losses exert similar influences on AMC-GCN. Second, it is observed that the 
classification performance of AMC-GCN remains relatively stable when 𝛾 falls in the range of 

[
10−1,10−4

]
. However, when 𝛾 ranges in 

[1,100], the classification performance fluctuates dramatically. This finding emphasizes the significance of both the semi-supervised 
contrastive loss and the cross-entropy loss in AMC-GCN. Therefore, it is better to take a smaller value for parameter 𝛾 .

Besides, we investigate the impact of the number of GCN layers on the performance of the proposed model, as illustrated in 
Fig. 13. It can be seen that the model consistently attains optimal performance when utilizing a two-layer model in comparison to 
other layer numbers. This may be because that a shallow network with a small number of parameters may not provide sufficient 
14

feature propagation. When the layer number increases, it often leads to undesired performance due to over-smoothing.
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Fig. 13. Influence of AMC-GCN with the varying numbers of layers on four datasets.

5. Conclusion

In this paper, we proposed an adaptive multi-channel contrastive graph neural network framework with deep interactive in-

formation named AMC-GCN which considered the correlation between node relationships and the relevance of views. For better 
incorporating consensus and complementary information, we applied a feature integrating network to extracting deep interactive 
information between views. To fuse the topology graph with minimizing the destruction of topology structures, we explored the 
relevance of views, imposed an adjacency matrix fusion network and designed multi-graph channels for delivering valuable informa-

tion. In addition, AMC-GCN used a semi-supervised contrastive loss with parameter sharing on GCNs to enhance the homogeneity of 
graph channels. The experimental results on graph datasets demonstrated the superiority of AMC-GCN compared with other popular 
baselines and classification methods.

There are several potential research directions that can be explored in the field of multi-view learning. In our proposed model, we 
focus on undirected graphs. However, in real-world scenarios, node relationships are more likely to be directed graphs. Therefore, it 
is important to investigate more GCN-based models on directed graphs. In future work, we plan to extend AMC-GCN and develop a 
multi-view learning framework that can handle directed graphs.

CRediT authorship contribution statement

Luying Zhong: Conceptualization, Methodology, Software, Writing – original draft. Jielong Lu: Software, Validation, Visual-

ization, Writing – review & editing. Zhaoliang Chen: Validation, Writing – review & editing. Na Song: Investigation, Validation.

Shiping Wang: Conceptualization, Methodology, Supervision, Validation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This work is in part supported by the National Natural Science Foundation of China under Grants U21A20472 and 62276065, 
the National Key Research and Development Plan of China under Grant 2021YFB3600503, and the Open Research Fund from 
the Guangdong Provincial Key Laboratory of Big Data Computing, The Chinese University of Hong Kong, Shenzhen, under Grant 
B10120210117-OF10.

References

[1] S. Bouhenni, S. Yahiaoui, N. Nouali-Taboudjemat, H. Kheddouci, Distributed graph pattern matching via bounded dual simulation, Inf. Sci. 610 (2022) 549–570.

[2] M.A. Castán-Lascorz, P. Jiménez-Herrera, A.T. Lora, G. Asencio-Cortés, A new hybrid method for predicting univariate and multivariate time series based on 
pattern forecasting, Inf. Sci. 586 (2022) 611–627.

[3] M. Ahmad, S.-W. Lee, Human action recognition using shape and clg-motion flow from multi-view image sequences, Pattern Recognit. 41 (2008) 2237–2252.

[4] H. Gao, F. Nie, X. Li, H. Huang, Multi-view subspace clustering, in: Proceedings of the 15th IEEE/CVF International Conference on Computer Vision, 2015, 
pp. 4238–4246.

[5] H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller, Multi-view convolutional neural networks for 3d shape recognition, in: Proceedings of the 15th IEEE/CVF 
International Conference on Computer Vision, 2015, pp. 945–953.

[6] Y. Yao, Z. Luo, S. Li, J. Zhang, Y. Ren, L. Zhou, T. Fang, L. Quan, Blendedmvs: a large-scale dataset for generalized multi-view stereo networks, in: Proceedings 
of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 1790–1799.
15

[7] N. Arya, S. Saha, Generative incomplete multi-view prognosis predictor for breast cancer, IEEE/ACM Trans. Comput. Biol. Bioinform. 19 (2022) 2252–2263.

http://refhub.elsevier.com/S0020-0255(23)01597-9/bib497D0D568C5FCCD32FD9B4281649A6D1s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib9CC855B27365991AB8D367F9A2640B44s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib9CC855B27365991AB8D367F9A2640B44s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib6D457B05E7191B680D3E472CA18A7CA8s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib7F27496903CAA3BBD53FCED609936E21s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib7F27496903CAA3BBD53FCED609936E21s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibDED5F276CF12544722267C74CAE7CCB7s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibDED5F276CF12544722267C74CAE7CCB7s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibAC9E788B145A730F89B2176D02FFAD55s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibAC9E788B145A730F89B2176D02FFAD55s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib4C582C0994B20461230938E9315E0199s1


Information Sciences 658 (2024) 120012L. Zhong, J. Lu, Z. Chen et al.

[8] K. Yang, Y. Zheng, K. Lu, K. Chang, N. Wang, Z. Shu, J. Yu, B. Liu, Z. Gao, X. Zhou, Pdgnet: predicting disease genes using a deep neural network with multi-view 
features, IEEE/ACM Trans. Comput. Biol. Bioinform. 19 (2022) 575–584.

[9] M. Lan, M. Meng, J. Yu, J. Wu, Generalized multi-view collaborative subspace clustering, IEEE Trans. Circuits Syst. Video Technol. 32 (2022) 3561–3574.

[10] X. Liu, X. Zhu, M. Li, L. Wang, C. Tang, J. Yin, D. Shen, H. Wang, W. Gao, Late fusion incomplete multi-view clustering, IEEE Trans. Pattern Anal. Mach. Intell. 
41 (2018) 2410–2423.

[11] Y.-M. Xu, C.-D. Wang, J.-H. Lai, Weighted multi-view clustering with feature selection, Pattern Recognit. 53 (2016) 25–35.

[12] L. Cai, H. Wang, F. Jiang, Y. Zhang, Y. Peng, A new clustering mining algorithm for multi-source imbalanced location data, Inf. Sci. 584 (2022) 50–64.

[13] F. Nie, G. Cai, X. Li, Multi-view clustering and semi-supervised classification with adaptive neighbours, in: Proceedings of the 31st AAAI Conference on Artificial 
Intelligence, 2017, pp. 2408–2414.

[14] C. Zhang, Y. Liu, H. Fu, Ae2-nets: autoencoder in autoencoder networks, in: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2019, pp. 2577–2585.

[15] F. Wu, X. Jing, P. Wei, C. Lan, Y. Ji, G. Jiang, Q. Huang, Semi-supervised multi-view graph convolutional networks with application to webpage classification, 
Inf. Sci. 591 (2022) 142–154.

[16] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in: Proceedings of the 5th International Conference on Learning 
Representations, 2017, pp. 1–14.

[17] J. Park, M. Lee, H.J. Chang, K. Lee, J.Y. Choi, Symmetric graph convolutional autoencoder for unsupervised graph representation learning, in: Proceedings of 
the 17th IEEE/CVF International Conference on Computer Vision, 2019, pp. 6518–6527.

[18] X. Zhou, F. Shen, L. Liu, W. Liu, L. Nie, Y. Yang, H.T. Shen, Graph convolutional network hashing, IEEE Trans. Cybern. 50 (2018) 1460–1472.

[19] H. Gao, Z. Wang, S. Ji, Large-scale learnable graph convolutional networks, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, 2018, pp. 1416–1424.

[20] Z. Jia, Y. Lin, J. Wang, R. Zhou, X. Ning, Y. He, Y. Zhao, Graphsleepnet: adaptive spatial-temporal graph convolutional networks for sleep stage classification, 
in: Proceedings of the 29th International Joint Conference on Artificial Intelligence, 2020, pp. 1324–1330.

[21] J. Kim, T. Kim, S. Kim, C.D. Yoo, Edge-labeling graph neural network for few-shot learning, in: Proceedings of the 29th IEEE Conference on Computer Vision 
and Pattern Recognition, 2019, pp. 11–20.

[22] S. Li, W.-T. Li, W. Wang, Co-gcn for multi-view semi-supervised learning, in: Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020, 
pp. 4691–4698.

[23] Z. Wu, X. Lin, Z. Lin, Z. Chen, Y. Bai, S. Wang, Interpretable graph convolutional network for multi-view semi-supervised learning, IEEE Trans. Multimed. (2023) 
1–14, https://doi .org /10 .1109 /TMM .2023 .3260649.

[24] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks on graphs, in: Proceedings of the 2nd International Conference on 
Learning Representations, 2014, pp. 1–14.

[25] D.K. Hammond, P. Vandergheynst, R. Gribonval, Wavelets on graphs via spectral graph theory, Appl. Comput. Harmon. Anal. 30 (2011) 129–150.

[26] S. Fu, S. Wang, W. Liu, B. Liu, B. Zhou, X. You, Q. Peng, X. Jing, Adaptive graph convolutional collaboration networks for semi-supervised classification, Inf. 
Sci. 611 (2022) 262–276.

[27] Z. Huang, W. Zhang, D. Wang, Y. Yin, A GAN framework-based dynamic multi-graph convolutional network for origin-destination-based ride-hailing demand 
prediction, Inf. Sci. 601 (2022) 129–146.

[28] H.T. Phan, N.T. Nguyen, D. Hwang, Convolutional attention neural network over graph structures for improving the performance of aspect-level sentiment 
analysis, Inf. Sci. 589 (2022) 416–439.

[29] X. Xu, T. Wang, Y. Yang, A. Hanjalic, H.T. Shen, Radial graph convolutional network for visual question generation, IEEE Trans. Neural Netw. Learn. Syst. 32 
(2021) 1654–1667.

[30] H. Zhong, J. Wu, C. Chen, J. Huang, M. Deng, L. Nie, Z. Lin, X. Hua, Graph contrastive clustering, in: Proceedings of the 18th IEEE/CVF International Conference 
on Computer Vision, 2021, pp. 9204–9213.

[31] Y. Guo, L. Gao, J. Song, P. Wang, N. Sebe, H.T. Shen, X. Li, Relation regularized scene graph generation, IEEE Trans. Cybern. 52 (2022) 5961–5972.

[32] X. Wang, M. Zhu, D. Bo, P. Cui, C. Shi, J. Pei, Am-gcn: adaptive multi-channel graph convolutional networks, in: Proceedings of the 26th ACM SIGKDD Conference 
on Knowledge Discovery and Data Mining, 2020, pp. 1243–1253.

[33] S. Wan, S. Pan, J. Yang, C. Gong, Contrastive and generative graph convolutional networks for graph-based semi-supervised learning, in: Proceedings of the 
AAAI Conference on Artificial Intelligence, 2021, pp. 10049–10057.

[34] C. Tang, X. Zheng, W. Zhang, X. Liu, X. Zhu, E. Zhu, Unsupervised feature selection via multiple graph fusion and feature weight learning, Sci. China Inf. Sci. 
(2022) 1–17, https://doi .org /10 .1007 /s11432 -022 -3579 -1.

[35] C. Tang, Z. Li, J. Wang, X. Liu, W. Zhang, E. Zhu, Unified one-step multi-view spectral clustering, IEEE Trans. Knowl. Data Eng. (2022) 1–12, https://doi .org /
10 .1109 /TKDE .2022 .3172687.

[36] C. Tang, X. Liu, X. Zhu, J. Xiong, M. Li, J. Xia, X. Wang, L. Wang, Feature selective projection with low-rank embedding and dual Laplacian regularization, IEEE 
Trans. Knowl. Data Eng. 32 (2019) 1747–1760.

[37] F. Nie, G. Cai, J. Li, X. Li, Auto-weighted multi-view learning for image clustering and semi-supervised classification, IEEE Trans. Image Process. 27 (2017) 
1501–1511.

[38] S. Wang, Z. Wang, W. Guo, Accelerated manifold embedding for multi-view semi-supervised classification, Inf. Sci. 562 (2021) 438–451.

[39] S. Ke, L. Zhouchen, Z. Zhanxing, Multi-stage self-supervised learning for graph convolutional networks on graphs with few labeled nodes, in: Proceedings of the 
34th AAAI Conference on Artificial Intelligence, 2020, pp. 5892–5899.

[40] M. Kan, S. Shan, X. Chen, Multi-view deep network for cross-view classification, in: Proceedings of the 26th IEEE Conference on Computer Vision and Pattern 
Recognition, 2016, pp. 4847–4855.

[41] J. Li, B. Zhang, G. Lu, D. Zhang, Generative multi-view and multi-feature learning for classification, Inf. Fusion 45 (2019) 215–226.

[42] S. Wang, Z. Chen, S. Du, Z. Lin, Learning deep sparse regularizers with applications to multi-view clustering and semi-supervised classification, IEEE Trans. 
Pattern Anal. Mach. Intell. 44 (2022) 5042–5055.

[43] Z. Yang, N. Liang, W. Yan, Z. Li, S. Xie, Uniform distribution non-negative matrix factorization for multiview clustering, IEEE Trans. Cybern. 51 (2021) 
3249–3262.

[44] X. Jia, X. Jing, X. Zhu, S. Chen, B. Du, Z. Cai, Z. He, D. Yue, Semi-supervised multi-view deep discriminant representation learning, IEEE Trans. Pattern Anal. 
Mach. Intell. 43 (2021) 2496–2509.

[45] A. Huang, Z. Wang, Y. Zheng, T. Zhao, C.-W. Lin, Embedding regularizer learning for multi-view semi-supervised classification, IEEE Trans. Image Process. 30 
(2021) 6997–7011.

[46] H. Tao, C. Hou, F. Nie, J. Zhu, D. Yi, Scalable multi-view semi-supervised classification via adaptive regression, IEEE Trans. Image Process. 26 (2017) 4283–4296.

[47] J. Xu, W. Li, X. Liu, D. Zhang, J. Liu, J. Han, Deep embedded complementary and interactive information for multi-view classification, in: Proceedings of the 
32st AAAI Conference on Artificial Intelligence, 2020, pp. 6494–6501.

[48] Z. Chen, L. Fu, J. Yao, W. Guo, C. Plant, S. Wang, Learnable graph convolutional network and feature fusion for multi-view learning, Inf. Fusion 95 (2023) 
109–119.

[49] G. Lin, K. Liao, B. Sun, Y. Chen, F. Zhao, Dynamic graph fusion label propagation for semi-supervised multi-modality classification, Pattern Recognit. 68 (2017) 
16

14–23.

http://refhub.elsevier.com/S0020-0255(23)01597-9/bibFB8DFBCB6C0CD6F97A1C9CC4FEB088D5s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibFB8DFBCB6C0CD6F97A1C9CC4FEB088D5s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibAF2B74E2F683473AD762072E40F72BB9s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibCFED35F0B0753AFE8C8E3B4562E5B6C4s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibCFED35F0B0753AFE8C8E3B4562E5B6C4s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib457501011FAA77206D082F976EE901E6s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib1562AADEAFE0399B8EFE2523B2867489s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib48E35BBCB5C9576CC3C4420419746A67s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib48E35BBCB5C9576CC3C4420419746A67s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib6D75CC1B7E0DD60D1B211863F66A9961s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib6D75CC1B7E0DD60D1B211863F66A9961s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib9D1777D4819781E810FB54F7D723A132s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib9D1777D4819781E810FB54F7D723A132s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibF35A4FCB7E455E3E2D540BC6B4115A61s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibF35A4FCB7E455E3E2D540BC6B4115A61s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib8FE558AB107E50A18F27B8ADD08E957As1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib8FE558AB107E50A18F27B8ADD08E957As1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibFEA94E93CC57CF10D5DD5062AC404C39s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib5D9751986EA3083F3E52934D19A1C4A1s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib5D9751986EA3083F3E52934D19A1C4A1s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibA61C12B84801A8C515019E2E4CFCB979s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibA61C12B84801A8C515019E2E4CFCB979s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibDD3466F375A38EE650E3E4C5336C89C6s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibDD3466F375A38EE650E3E4C5336C89C6s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibD23EB16FCD2675B49517FB3C52E271EAs1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibD23EB16FCD2675B49517FB3C52E271EAs1
https://doi.org/10.1109/TMM.2023.3260649
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib8B008C9592E12C482598B750C0E856EFs1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib8B008C9592E12C482598B750C0E856EFs1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibB954984E6ADE063E5A77A923A8B35499s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib1EE20156469B7F36E77B2EBBF3C1FAE8s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib1EE20156469B7F36E77B2EBBF3C1FAE8s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibE40244607CB397FFA0222570BF6C7CF7s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibE40244607CB397FFA0222570BF6C7CF7s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibA5B5A0953A39A6CF968E2446A422EE9Ds1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibA5B5A0953A39A6CF968E2446A422EE9Ds1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibD465B3E0C1B18BE398BFC0DC2045344Fs1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibD465B3E0C1B18BE398BFC0DC2045344Fs1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib12C16B850C7DE565F2670AEC297A325Ds1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib12C16B850C7DE565F2670AEC297A325Ds1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibB3BAE5CAF6BA720DE4BBF0C8EAD7A4E4s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib3EB2A3B6CE1936311B1338C1837CE8AFs1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib3EB2A3B6CE1936311B1338C1837CE8AFs1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib5F95FEA1777CBD74D09E1C85BA2CE4FCs1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib5F95FEA1777CBD74D09E1C85BA2CE4FCs1
https://doi.org/10.1007/s11432-022-3579-1
https://doi.org/10.1109/TKDE.2022.3172687
https://doi.org/10.1109/TKDE.2022.3172687
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib5666E41BBE6676E838A3B9F3E17B4DBDs1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib5666E41BBE6676E838A3B9F3E17B4DBDs1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibC6DA8BE7E2BA284A42A5746A463E1AE2s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibC6DA8BE7E2BA284A42A5746A463E1AE2s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib548D9BB1364905C8C32F55E20C1ACC74s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibA5FC6CD45A76B144B18A1CE932D797A7s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibA5FC6CD45A76B144B18A1CE932D797A7s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib025F9EE72A6B1DA54DDACE912D40410Ds1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib025F9EE72A6B1DA54DDACE912D40410Ds1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib5C92CD5DCED56A34149C9BB06EFBF1B3s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibFFD8C8A2455FF5EFB58363DA2253D554s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibFFD8C8A2455FF5EFB58363DA2253D554s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibFF1CD3BF526D65D7AB7F8CD1B70482D5s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibFF1CD3BF526D65D7AB7F8CD1B70482D5s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibC8E82766E25DA7A09760BBBCA51D42FEs1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibC8E82766E25DA7A09760BBBCA51D42FEs1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib51A11EB1DE5ED60498DD8D5B8D0FC5BDs1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib51A11EB1DE5ED60498DD8D5B8D0FC5BDs1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibAA0E308F55D4E646178976163EA07F8Bs1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib03A28C80D88A3DC715522B50C3F0F0F7s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib03A28C80D88A3DC715522B50C3F0F0F7s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib09097530ABD6EF87D405045CFF3099D9s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bib09097530ABD6EF87D405045CFF3099D9s1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibF015CCBA82027BEDAA5E9FDDCFBF969Bs1
http://refhub.elsevier.com/S0020-0255(23)01597-9/bibF015CCBA82027BEDAA5E9FDDCFBF969Bs1

	Adaptive multi-channel contrastive graph convolutional network with graph and feature fusion
	1 Introduction
	2 Related work
	2.1 Graph convolutional network
	2.2 Multi-view learning

	3 The proposed method
	3.1 Overview and notation
	3.2 Deep interactive feature integration network
	3.3 Adjacency matrix fusion network with division strategy
	3.4 Learnable GCN with semi-supervised contrastive loss
	3.5 Model training

	4 Experiments
	4.1 Experimental setup
	4.2 Experimental results
	4.3 Model analysis

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


