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AGNN: Alternating Graph-Regularized Neural
Networks to Alleviate Over-Smoothing
Zhaoliang Chen , Zhihao Wu , Zhenghong Lin , Shiping Wang , Member, IEEE,

Claudia Plant , and Wenzhong Guo

Abstract— Graph convolutional network (GCN) with the pow-
erful capacity to explore graph-structural data has gained notice-
able success in recent years. Nonetheless, most of the existing
GCN-based models suffer from the notorious over-smoothing
issue, owing to which shallow networks are extensively adopted.
This may be problematic for complex graph datasets because
a deeper GCN should be beneficial to propagating information
across remote neighbors. Recent works have devoted effort
to addressing over-smoothing problems, including establishing
residual connection structure or fusing predictions from multi-
layer models. Because of the indistinguishable embeddings from
deep layers, it is reasonable to generate more reliable predictions
before conducting the combination of outputs from various lay-
ers. In light of this, we propose an alternating graph-regularized
neural network (AGNN) composed of graph convolutional layer
(GCL) and graph embedding layer (GEL). GEL is derived
from the graph-regularized optimization containing Laplacian
embedding term, which can alleviate the over-smoothing problem
by periodic projection from the low-order feature space onto the
high-order space. With more distinguishable features of distinct
layers, an improved Adaboost strategy is utilized to aggregate
outputs from each layer, which explores integrated embeddings
of multi-hop neighbors. The proposed model is evaluated via a
large number of experiments including performance comparison
with some multilayer or multi-order graph neural networks,
which reveals the superior performance improvement of AGNN
compared with the state-of-the-art models.

Index Terms— Graph convolutional network (GCN), graph
representation learning, over-smoothing, semi-supervised classi-
fication.

NOMENCLATURE

Notations Explanations
X Feature matrix of nodes.

Manuscript received 27 July 2022; revised 4 December 2022; accepted
22 April 2023. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant U21A20472 and Grant 62276065, and
in part by the National Key Research and Development Plan of China under
Grant 2021YFB3600503. (Corresponding author: Wenzhong Guo.)

Zhaoliang Chen, Zhihao Wu, Zhenghong Lin, Shiping Wang, and Wenzhong
Guo are with the College of Computer and Data Science and the Fujian
Provincial Key Laboratory of Network Computing and Intelligent Infor-
mation Processing, Fuzhou University, Fuzhou 350116, China (e-mail:
chenzl23@outlook.com; zhihaowu1999@gmail.com; hongzhenglin970323@
gmail.com; shipingwangphd@163.com; guowenzhong@fzu.edu.cn).

Claudia Plant is with the Faculty of Computer Science and the Research
Network Data Science, University of Vienna, 1090 Vienna, Austria (e-mail:
claudia.plant@univie.ac.at).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2023.3271623.

Digital Object Identifier 10.1109/TNNLS.2023.3271623

A Adjacency matrix.
Y Label information.
H(l) Output of the lth GCL.
Z(l) Output of the lth GEL.
D Diagonal degree matrix.
L Laplacian matrix.
W(l)

g Weight matrix for the lth GCL.

W(l)
e1 , W(l)

e2 Weight matrices for the lth GEL.
Proxg(·) Proximal operator.
ξ(θ1,θ2)(·) MSReLU function with hyperpa-

rameters θ1 and θ2.
c(·) Weak classifier.
S Weighted embedding of multi-order

feature fusion.
α(l), β(l) Weights of classifiers for the lth

GCL and GEL.
πi Node weights for AdaBoost.
e(l)

H , e(l)
Z Weighted classification error rates.

ηi Node weight updating rate for
AdaBoost.

R Number of classes.

I. INTRODUCTION

GRAPH neural network (GNN) has become one of the
promising technologies manipulating graph-structural

data in recent years, obtaining remarkable achievement in
various pattern recognition fields, including node classifica-
tion or clustering [1], [2], [3], recommender systems [4],
[5], [6], and computer vision [7], [8], [9]. As one of
the typical GNN-based models, graph convolutional network
(GCN) is receiving plentiful attention from a population of
researchers [10], [11]. Owing to its powerful ability to extract
knowledge from sparse weighted networks, GCN has also
been adopted to weight prediction for sparse weighted graphs,
such as dynamic graphs [12], [13], [14]. Originated from
GCN, graph autoencoder (GAE) was also investigated to
conduct weighted link predictions via the reconstruction of the
adjacency matrix [15], [16], [17]. GCN propagates node repre-
sentations across topology networks via convolution operators
on non-Euclidean space, which integrates node features and
relationships involved in a graph. Nonetheless, recent practice
and theoretical analysis have indicated that a two-layer GCN
generally performs the best, and a deep GCN often leads to
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Fig. 1. Architectures of numerous GCN-based methods and our AGNN
with graph convolutional layer (GCL) and the proposed graph embedding
layer (GEL). GCN [18] is a sequence of GCLs, which encounters severe
over-smoothing with deep layers. JK-Net [19] adds connections among layers
to carry all low-order information to the last layer. AdaGCN [20] aggregates
multi-hop embeddings of all layers. The proposed AGNN simultaneously
carries low-order features to deep layers and accumulates node predictions
from all layers.

unfavorable performance, which is summarized into the over-
smoothing issue.

Over-smoothing is a widely concerned deficiency of GCN,
which has been extensively investigated. Recent studies have
proved that a graph convolution is exactly a special form
of Laplacian smoothing, attributed to which a deeper GCN
may result in indistinguishable node features and make the
downstream classification tasks challenging [21], [22], [23].
It makes most existing GCN-based models shallow and lack
the ability to mine knowledge from high-order neighbors,
which is more severe for datasets with high-degree nodes.
Considerable works have been devoted to solving this problem.
On one hand, some research attempted to consider a similar
structure of residual connection leveraged in Euclidean deep
convolutional networks [19], [24], [25]. Most of these methods
made full use of embeddings from the previous layers or the
input matrix to avoid information loss. On the other hand,
some studies placed more emphases on effective exploration
and combination of hidden representations from different hops
of neighbors [20], [23], [26]. A summary of the comparison
between the representative algorithms (GCN [10], JK-Net [19],
AdaGCN [20]), and the proposed method in this article is
shown in Fig. 1. Although some works have succeeded in
relieving over-smoothing problems, they were still outper-
formed by a classical two-layer GCN. In addition, a direct
linear combination of embeddings from hidden layers may
not work effectively, because the similar and indistinguishable
features from deeper layers can annihilate useful information
from shallow layers and confound the predictions of classifiers.
Accordingly, it is crucial to develop a reliable network where
each layer can yield accurate and distinguishable outputs
before conducting the prediction fusion.

In pursuit of addressing the aforementioned problems,
in this article, we design an alternating graph-regularized
neural network (AGNN) that enables the construction of
deep layer architecture. AGNN alternately performs forward
computation of GCLs and GELs. To get rid of similar

and indistinguishable features caused by over-smoothing,
GEL is designed to project original node embeddings onto
low-dimensional space in deep layers and preserve critical
features via sparse outputs. Thus, each proposed GEL aims
to learn Laplacian-constrained sparse representations from
original features, on the basis of the optimization problem
with respect to the Laplacian-based graph regularization and
sparsity constraint. We derive the updating rules of this
optimization target and transform them into GEL that pre-
serves discriminative node embeddings during network train-
ing and alleviates the over-smoothing problem. We analyze
the network architecture and draw a conclusion that both
GCL and GEL can be approximately regarded as solutions to
distinct graph regularization problems. Furthermore, with more
accurate predictions yielded by GCL and GEL, an improved
Adaboost algorithm is adopted to aggregate node representa-
tions from varying hidden layers, so that multi-order infor-
mation from different depths of networks can be leveraged.
In summary, our contributions are as follows.

1) According to a graph-regularized optimization problem
and its iterative solutions, we construct a new layer-
dubbed GEL, which can alleviate over-smoothing phe-
nomenon via carrying low-order information to deep
layers.

2) A graph-regularized neural network with alternating
GCLs and GELs is proposed, which adopts both residual
connection and embedding aggregation architecture. Its
layers can be regarded as approximations of different
graph optimization problems, which promote the inter-
pretability of the model.

3) With more accurate embeddings yielded by deep layers,
an improved Adaboost algorithm is designed to lever-
age features from distinct hidden layers, enabling the
model to aggregate high-quality node representations
from multi-hop neighbor propagation.

4) Substantial experimental results reveal the superiority
of the proposed AGNN, which succeeds in coping
with over-smoothing issue and outperforms the widely
applied two-layer GCN and other multilayer GCN-based
methods with deep network structures.

The rest contents of this article are organized as fol-
lows. Recent works of GCN and approaches to cope
with the over-smoothing issues are discussed in Section II.
In Section III, we elaborate on the proposed framework,
including detailed analysis and comparison between AGNN
and other models. We evaluate AGNN with comprehensive
experiments in Section IV, looking into the performance under
varying experimental settings. Eventually, we conclude our
works in Section V.

II. RELATED WORKS

A. Graph Convolutional Network
GCN has been applied to a multitude of applications and

attracted attention from a wide range of researchers in recent
years. Xu et al. [27] came up with a deep feature aggregation
model with a GCN to conduct high spatial resolution scene
classification. A GCN-based approach under the autoencoder
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framework was proposed to perform unsupervised community
detection [28]. To reduce the computational cost of graph
convolutions, a low-pass collaborative filter was proposed to
utilize GCN with a large graph [29]. Gan et al. [30] designed
a multigraph fusion model that combined the local graph
and the global graph to produce a high-quality graph for
GCN. An aggregation scheme was applied to promote the
robustness of GCN against structural attacks [31]. Geomet-
ric scattering transformations and residual convolutions were
leveraged to enhance the conventional GCN [18]. Xu et al. [32]
presented a spatiotemporal multigraph convolutional fusion
network, which exploited the graph-structural road network for
urban vehicle emission estimation. GCN with a question-aware
gating mechanism was presented to aggregate evidences on
the path-based graph [33]. A new graph convolution operator
was proposed to obtain robust embeddings in the spectral
domain [34]. The variant of GCN was derived via a modified
Markov diffusion kernel, which explored the global and local
contexts of nodes [35]. Weighted link prediction is also a
critical application of GCN. For example, a dynamic GCN
was proposed with a tensor M-product technique, to cope
with adjacency tensor and feature tensor yielded from dynamic
graphs [36]. Cui et al. [17] proposed an adaptive graph encoder
to strengthen the filtered features for more discriminative
node embeddings, which was applied to link prediction tasks.
Wang et al. [15] designed a temporal GAE, which encoded
the fundamentally asymmetric nature of a directed network
from neighborhood aggregation and captured link weights
via reshaping the adjacency matrix. However, most of these
GCN-based models suffer from shallow network structure
owing to the over-smoothing issue.

B. Over-Smoothing Issue
Numerous works have investigated approaches to alleviate

the over-smoothing issue. An improved normalization trick
applying the “diagonal enhancement” was introduced to help
build a deep GCN [37]. Simple graph convolution [38] was
proposed to mine high-order embeddings in the graph via
utilizing the kth power of the graph convolutional matrix and
removing the ReLU function. A multilayer GCN was con-
structed with AdaBoost to linearly combine embeddings from
varying layers [20]. Cui et al. [39] restricted over-smoothing
by extracting hierarchical multi-scale node feature represen-
tations. PPNP and APPNP [26] were presented to replace
the power of the graph convolutional matrix inspired by
the personalized PageRank matrix. Residual connections and
dilated convolutions in CNN were applied to promote the
training of a deep GCN model. Jumping knowledge networks
preserved the locality of node embeddings via dense skip
connections that merged features from each layer [19]. A deep
GCN was proposed with residual connections and identity
mappings to relieve the over-smoothing problem [24]. Most
of these methods attempted to alleviate over-smoothing via
connecting distinct network layers, simplifying multi-order
graph convolutions, or conducting multilayer feature fusion.
Nonetheless, these existing works did not simultaneously
consider cross-layer feature connections and the aggregation

of embeddings from varying layers, which benefit a multilayer
model to obtain a more precise prediction.

III. PROPOSED METHOD

Given a connected undirected graph G = (V, E) with n
nodes and e edges, we define the corresponding adjacency
matrix as A ∈ Rn×n . The node features are denoted by
the matrix X ∈ Rn×m , i.e., xi is an m-dimensional feature
vector of the i th node. The proposed AGNN aims to carry
out the semi-supervised classification task with the given set
� of partially labeled samples and its corresponding ground
truth matrix Y ∈ Rn×c encoding one-hot vectors, where c is
the number of classes. For the purpose of better readability,
we summarize the primarily used mathematical notations in
Nomenclature. As described in Fig. 2, AGNN is a sequence of
alternating GCL and GEL, and an improved AdaBoost strategy
is adopted to merge multilayer features. Both GCL and GEL
are constructed from graph-regularized optimization problems,
which form a basic network block of AGNN. In particular,
GEL periodically projects the original node embeddings onto
deep layers to alleviate over-smoothing, which introduces
residual connections into AGNN. In Section III-A, we first
analyze two distinct graph-regularized optimization problems,
on the basis of which AGNN is constructed. After that,
an improved AdaBoost is designed to conduct multilayer
feature fusion in Section III-B. Finally, we summarized and
analyzed the proposed model in Section III-C, including time
complexity analysis and comparison to related works.

A. Alternating GCLs and GELs
First, we revisit the definition of a vanilla graph convolution

operator. A GCL is formulated as follows:

H(l)
= σ

(
D̃−

1
2 ÃD̃−

1
2 H(l−1)W(l)

g

)
(1)

where Ã = A+ I is the adjacency matrix that adds self-loop
and [D̃]ii =

∑
j [Ã]i j denotes the diagonal degree matrix.

The optional activation function is denoted as σ(·). In fact,
the added self-loop A + I can be regarded as a simple
residual connection to the previous layer. Actually, GCL can
be formulated as a graph-regularized optimization problem.
Namely, we have the following theorem.

Theorem 1: With a linear transformation matrix W(l)
g and

the node embedding H(l−1) from the previous layer, the lth
GCL defined in (1) is the first-order approximation of the
following optimization problem:

H(l)
= arg min

E(l)

∥∥E(l)
−H(l−1)W(l)

g

∥∥2

F
+ Tr(E(l)T L̃E(l)) (2)

where L̃ = I− D̃−(1/2)ÃD̃−(1/2).
Proof: The derivative with respect to E(l) of the opti-

mization problem defined in (2) is

∂J
∂E(l)

= 2
(
E(l)
−H(l−1)W(l)

g

)
+ 2L̃E(l). (3)

Setting the derivative to 0, we have the closed-form solution

E(l)
=

(
I+ L̃

)−1H(l−1)W(l)
g . (4)
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Fig. 2. Framework of a six-layer AGNN, which consists of three GCLs and three GELs. AGNN is a block-wise graph neural network framework constructed
with alternating GCL and GEL, where each block contains a GCL and a GEL. For the purpose of exploiting reliable and discriminative multi-hop information,
an improved AdaBoost strategy is utilized to aggregate node predictions yielded by weak classifiers in all layers, and the whole framework is evaluated by
cross-entropy loss.

Because the term (I + L̃)−1 can be decomposed into Taylor
series, i.e.,(

I+ L̃
)−1
= I− L̃+ L̃2

+ · · · + (−1)t L̃t (5)

we have the first-order truncated approximation as follows:(
I+ L̃

)−1
≈ I− L̃ = D̃−

1
2 ÃD̃−

1
2 . (6)

Consequently, we obtain the approximation of H(l) as follows:

H(l)
≈ D̃−

1
2 ÃD̃−

1
2 H(l−1)W(l)

g (7)

which indicates that GCL is a first-order approximation of
problem (2). □

However, as we have analyzed before, deep graph convo-
lutions often suffer from extremely indistinguishable features
due to the over-smoothing phenomenon. A solution is enabling
the model to carry low-order information by connecting initial
node features to each GCL. Thus, we develop a new layer to
bring features from the original space to deep layers. To be
consistent with GCL, we define a graph-regularized optimiza-
tion problem to formulate this layer. Instead of directly adding
initial embeddings to the end of each GCL, a trainable projec-
tion derived from graph regularization optimization is applied,
which adaptively learns low-dimensional representations from
original node embeddings. Namely, with graph embedding H,
we consider the following sparsity-constrained optimization:

Z(l)
= arg min

H
∥X−HP(l)

∥
2
F + Tr

(
HT L̃H

)
+ ∥H∥1 (8)

which explores Laplacian-constrained representations from
the original feature space after the lth GCL. In pursuit of
obtaining more distinguishable compressed node embeddings,
we adopt ∥H∥1 to consider sparse representations. The sparsity
constraint enables GEL to yield more discriminative node rep-
resentations that only include important features, and alleviates
the similar features of different nodes in deep layers, which
is beneficial to solve the over-smoothing issue. Consequently,
it should have the same dimension as the previous GCL, and
we can project it onto the original feature space with an
overcomplete dictionary matrix P(l)

∈ Rdl×m , where dl < m
is the number of hidden units at the lth GCL. In addition,

we adopt the Laplacian embedding criterion Tr(HT L̃H) to
make nodes close when they are connected, where the Lapla-
cian matrix L̃ is precomputed. To obtain more representative
low-dimensional features, ∥H∥1 promoting the sparsity of
outputs is added to extract robust projected embeddings during
training. Letting f (H) = Tr(HT L̃H) + ∥X − HP(l)

∥
2
F and

g(H) = ∥H∥1, we can derive the updating rules of problem (8)
at H(l) via proximal gradient descent method. Namely

Z(l)
= arg min

H
f (H(l))+ ⟨∇ f (H(l)), H−H(l)

⟩

+
τ

2

∥∥H−H(l)
∥∥2

F +
∥∥H(l)

∥∥
1

= arg min
H

τ

2
∥H− Y∥2

F +
∥∥H(l)

∥∥
1 (9)

where Y = H(l)
− (1/τ)∇ f (H(l)), and τ is the Lipschitz

constant. Given the proximal operator Proxg(·), problem (9)
can be solved by the proximal mapping with respect to ℓ1
norm. Because we have the derivatives

∇ f (H(l)) = 2L̃H(l)
+ 2

(
H(l)P(l)

− X
)
P(l)T

(10)

the proximal mapping can be derived from

Z(l)
= Proxg

(
H(l)
−

1
τ
∇ f (H(l))

)
= Proxg

(
H(l)
−

1
τ

(
2L̃H(l)

+ 2
(
H(l)P(l)

− X
)
P(l)T

))
= Proxg

(
H(l)

(
I−

2
τ

P(l)P(l)T
)
−

2
τ

L̃H(l)
+

2
τ

XP(l)T
)

.

(11)

Transforming terms I − (2/τ)P(l)P(l)T and (2/τ)P(l)T into
trainable weight matrices W(l)

e1 ∈ Rdl×dl and W(l)
e2 ∈ Rm×dl ,

respectively, we have the following proximal projection:

Z(l)
= Proxg

(
H(l)W(l)

e1 + XW(l)
e2 − λL̃H(l)

)
(12)

where λ = (2/τ) is a hyperparameter. Because Proxg(·) can
be regarded as an activation function, (12) is similar to the
definition of a neural network layer with two trainable weight
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matrices. In particular, the proximal operator for ℓ1 constraint
promoting the sparsity is

Proxg

(
Z(l)

i j

)
= sign

(
Z(l)

i j

)(∣∣∣Z(l)
i j

∣∣∣− θ
)
+

(13)

which is the soft thresholding (ST) function and θ is the
hyperparameter to guarantee the sparsity of the output [40].
It can be realized by a parameterized ReLU-based activation
function, i.e.,

ξθ (z) = ReLU(z − θ)− ReLU(−z − θ). (14)

Due to the definition of the ST function, |ξθ (z)| is actually
smaller than |z| when z > θ and z < −θ . This may be
problematic due to the gap between original features and
outputs of ξθ (z) when θ is relatively large. For the sake of
relieving the influence of this problem, in this article, we adopt
a multistage proximal projection for the sparsity constraint,
as shown below

ξ(θ1,θ2)(z) =



z, θ2 ≤ z(
2θ2 − θ1

θ2

)
(z − θ1), θ1 ≤ z < θ2

0, −θ1 ≤ z < θ1(
2θ2 − θ1

θ2

)
(z + θ1), −θ2 ≤ z < −θ1

z, z < −θ2

(15)

where θ2 ≥ θ1 > 0. As a matter of fact, it also can be imple-
mented by the combination of ReLU functions. Consequently,
we define a new ReLU-based activation function as follows:

ξ(θ1,θ2)

(
Z(l))
=w1

(
ReLU

(
Z(l)
− θ1

)
− ReLU

(
−Z(l)

− θ1
))

− w2
(
ReLU

(
Z(l)
− θ2

)
− ReLU

(
−Z(l)

− θ2
))

(16)

where w1 and w2 are computed according to the parameter
settings of θ1 and θ2, that is

w1 =
2θ2 − θ1

θ2

w2 = w1 − 1 =
θ2 − θ1

θ2
. (17)

Consequently, we have 2 ≥ w1 ≥ 1 ≥ w2 ≥ 0. Eq. (16)
is termed as a Multistage ReLU (MSReLU) function. The
comparison of MSReLU and other activation functions is
shown in Fig. 3. It can be observed that with suitable θ1 and
θ2, it has less gap between |ξθ1,θ2(z)| obtained by MSReLU
and |z| due to the increasing slope when θ1 < z < θ2 and
−θ2 < z < −θ1, which is beneficial to obtaining more accurate
features. When z > θ2 and z < −θ2, the slope is the same as
ReLU and ST to maintain the feature distribution of outputs.

Associated with GCL, we can formulate a basic block of
the alternating forward computation (contains two layers) as
follows:

H(l)
= σ

(
D̃−

1
2 ÃD̃−

1
2 H(l−1)W(l)

g

)
(18)

Z(l)
= ξ(θ1,θ2)

(
H(l)W(l)

e1 + XW(l)
e2 − λL̃H(l)

)
(19)

where H(l−1)
= Z(l−1) for l = 2, . . . , t and H(0)

= X.
We term the forward computation defined in (19) as GEL. The

Fig. 3. Comparison of different activation functions (ReLU, ST and
MSReLU) for sparse proximal projection, where hyperparameters are fixed
as θ = 0.05 for ST, and θ1 = 0.05, θ2 = 0.10 for MSReLU.

definition of GEL shows that it refines graph representations
from the previous GCL and considers one-hop embeddings of
neighbors via L̃H(l). Here we adopt H(l) generated by GCL as
the input of GEL, because GCL also implicitly optimizes the
graph Laplacian regularization term. Actually, both GCL and
GEL are one-step approximations of Laplacian-based graph
regularization problems. GEL also leverages the information
of original features via an input-injected computation defined
by XW(l)

e2 to preserve sparse and discriminative representations
of nodes at the hidden and the last layers, thereby alleviating
the over-smoothing problem. On the basis of (18) and (19),
we can construct a deep block-wise graph neural network with
2t layers that consists of GCL and GEL alternately.

B. AGNN With Improved Adaboost

To further leverage underlying features at each layer and
obtain results contributed by different hops of neighborhood
relationships, we adopt a variant of Adaboost to compute the
final predictions of the model. For the purpose of obtaining
graph representations with the same dimension, we adopt a
weak classifier

c
(
H(l))

= Softmax
(
σ
(
H(l)Wc + b

))
(20)

for each layer of GCL, where Wc ∈ Rdl×dL . The weak classi-
fier c(Z(l)) for GEL is homologous. We assign corresponding
weights α(l) and β(l) for each GCL and GEL. Formulaically,
the final weighted result of various classifiers is

S =
t∑

l=1

(
α(l)c

(
H(l))

+ β(l)c
(
Z(l))) (21)

where α(l) indicates the weight of classifier with respect to
H(l) and β(l) indicates the weight of classifier with respect to
Z(l). We measure the performance of each weak classifier on
labeled nodes to calculate classifier weights, which ensures
that classifiers with higher accuracy on the training set are
assigned to larger weights. First, the weighted error rates
of two types of classifiers are computed by the following
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equations:

e(l)
H =

∑
i∈�

πi I
(
c
(
H(l))

i ̸= yi
)/ ∑

i∈�

πi (22)

e(l)
Z =

∑
i∈�

πi I
(
c
(
Z(l))

i ̸= yi
)/ ∑

i∈�

πi (23)

where � is the set of samples having supervision information
and πi is the weight of a labeled node. The sample weights
are initialized by πi = (1/|�|). Therefore, classifier weights
α(l) and β(l) are computed by the following equations:

α(l)
=

1
2

log
1− e(l)

H

e(l)
H

+ log(R − 1) (24)

β(l)
=

1
2

log
1− e(l)

Z

e(l)
Z

+ log(R − 1) (25)

where R is the number of classes. We apply the softmax
normalization to all classifier weights, i.e.,

[α, β] ← Softmax([α, β]) (26)

where α = [α(1), . . . , α(l)
] and β = [β(1), . . . , β(l)

]. For the
purpose of increasing weights on incorrect classified nodes,
we update πi by the following equations:

πi ← (1+ ηi )πi I(ci ̸= yi ) (27)
πi ← max(1− ηi , ρ)πi I(ci = yi ) (28)

where ci is the predicting result of the former classifier and
yi is the ground truth. ηi is an updating rate that changes the
sample weight automatically according to predictions of the
weak classifier. The threshold 0 < ρ < 1 is adopted to avoid
nodes with weights of zeros. In particular, the updating rate
ηi applied in this article is defined by the following equation:

ηi = exp

log

 pi,r

max
(∑R

j=1, j ̸=r pi, j , ϵ
)
 (29)

where pi,r is the probability of the i th sample belonging to the
r th class and is obtained from the r th entry of [c(H(l))]i or
c[(Z(l))]i . Namely, pi,r = [c(H(l))]i,r or pi,r = [c(Z(l))]i,r .
Here ϵ is a tiny value avoiding the divide-by-zero error.
A higher ηi indicates that the importance of the i th sample
should be larger if it is incorrectly classified, and should be
smaller otherwise. For a correctly predicted node, the weight
of it would decrease remarkably if pi,r is higher. This indicates
that the model should pay less attention to correct predictions
with high confidence. As for a misclassified node, the weight
of it would grow up considerably with a higher pi,r , attributed
to the reason that the node prediction result is much against
the ground truth.

With the weighted node embedding obtained by (21), the
objective of the proposed AGNN is the cross-entropy loss
function, i.e.,

L = −
∑
i∈�

c∑
j=1

Yi j lnSi j (30)

which only works on nodes in the training set � to perform
the semi-supervised classification task.

Algorithm 1 Alternating Graph-Regularized Neural Network
Input: Adjacency matrix A ∈ Rn×n , feature matrix X ∈

Rn×m , hyperparameters λ, ρ, θ1, and θ2;
Output: Graph embedding S ∈ Rn×c.

while not convergent do
for l = 1→ t do

Compute the output H(l) of the lth GCL via Eq. (18);
Compute the output Z(l) of the lth GEL via Eq. (19);

end for
Initialize weights {πi }i∈� by πi = (1/|�|);
for l = 1→ t do

Update sample weights {πi }i∈� for the lth GCL via
Eqs. (27), (28) and (29);
Calculate the classifier weight α(l) for the lth GCL via
Eqs. (22) and (24);
Update sample weights {πi }i∈� for the lth GEL via
Eqs. (27), (28) and (29);
Calculate the classifier weight β(l) for the lth GEL via
Eqs. (23) and (25);

end for
Obtain weighted embeddings S via Eqs. (26) and (21);
Update all trainable parameters via back propagation;

end while
return Weighted graph embedding S.

C. Model Analysis

Algorithm 1 depicts the procedure of AGNN. In general, the
procedure of AGNN is divided into two parts: forward compu-
tation of multiple network layers and calculation on weighted
graph embedding S via the variant of Adaboost. Given weight
matrix W(l)

g ∈ Rdl−1×dl , the computational complexity for
the lth GCL is linear to the number of edges |E |. Namely,
it is O(|E |dl−1dl). As to the lth GEL, the computational
complexity is O(|E |dl + nmdl). Consequently, the forward
computation of a basic block with a GCL and a GEL is approx-
imately O(|E |dl−1dl+nmdl). Owing to dl ≪ min(n, m), GEL
does not significantly increase the computational cost of the
networks.

In light of previous analysis, both GCL and GEL are approx-
imations of optimization problems with respect to graph reg-
ularization, attributed to which they can be considered as two
distinct layers. Hence, AGNN can be approximately regarded
as an alternating optimization procedure of problems (2) and
(8). The difference between the two layers is that the for-
mer optimization performs graph convolutions, and the latter
optimization is a sparse graph-regularized projection from the
original feature space. In a nutshell, the proposed AGNN
is a block-wise graph neural network that simultaneously
considers cross-layer connection and aggregation of multi-
hop information, which is beneficial to obtaining reliable
high-order neighborhood embeddings before conducting infor-
mation fusion. The primary differences to existing models are
summarized as follows.

1) Different from methods that directly combine node
embeddings from outputs of varied layers (e.g.,
AdaGCN [20]), AGNN gets rid of inaccurate predictions
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of deep layers via periodic projection from original
feature space to latent embeddings.

2) Instead of widely used additive connections from previ-
ous layers, AGNN establishes an optimization-inspired
GEL module which is derived from the Laplacian-based
graph regularization problem. This makes the initial
features propagate to each GCL dexterously with less
information loss.

IV. EXPERIMENTAL ANALYSIS

In this section, comprehensive experiments are conducted
including evaluation against several state-of-the-art models and
ablation studies. All experiments are run on a platform with
AMD R9-5900X CPU, NVIDIA GeForce RTX 3060 12 GB
GPU, and 32 GB RAM.

A. Experimental Setup

For the following experiments, we compare the proposed
AGNN with numerous methods. Apart from classical baselines
(MLP and Chebyshev [41]), other state-of-the-art methods can
be divided into two categories: vanilla GNN-based models
(GraphSAGE [42], GAT [43], and ScatteringGCN [18]), and
multilayer or high-order information-based GCN methods
(GCN [10], APPNP [26], JK-Net [19], SGC [38], Clus-
terGCN [37], GCNII [24], SSGC [35], and AdaGCN [20]).
In particular, APPNP, SGC, and SSGC propagate node infor-
mation via the proposed high-order filters, where numbers of
order can be regarded as numbers of layers for other multilayer
approaches. The compared models are demonstrated in detail
as follows.

1) MLP is a classical baseline for classification, which
is a multilayer perceptron architecture with a softmax
function as the classifier.

2) Chebyshev is a GCN-like baseline that adopts Cheby-
shev filters to perform graph convolutions with the given
node features and the topology network.

3) GCN conducts a variant of convolution on the graph,
which is exactly the first-order approximation of the
Chebyshev polynomial.

4) GraphSAGE constructs a graph neural network that
explores node embeddings through sampling and accu-
mulating features from local neighbors of a node.

5) GAT is a graph neural network adopting an attention
mechanism to explore node attributes across the graph,
which enables the implicit assignment of weights to
distinct nodes in a neighborhood.

6) JK-Net dexterously exploits various neighborhood
ranges of nodes via a jumping knowledge structure that
considers residual connections.

7) SGC proposes a faster variant of GCN via successively
removing nonlinearities and collapsing weight matrices
between consecutive layers.

8) APPNP leverages personalized PageRank to improve
the performance of GCN-like models, which derives an
improved propagation scheme.

9) ClusterGCN is a GCN-based framework that samples a
group of nodes by a graph clustering algorithm, which

alleviates the over-smoothing problem via a diagonal
enhancement architecture.

10) GCNII is a variant of GCN with residual connection and
identity mapping, which effectively alleviates the over-
smoothing phenomenon.

11) ScatteringGCN builds an augmented GCN with geo-
metric scattering transforms and residual convolutions
to alleviate the over-smoothing issue.

12) SSGC develops a variant of GCN by adopting a modified
Markov diffusion kernel, which explores the global and
local contexts of nodes.

13) AdaGCN integrates learned knowledge from distinct
layers of GCN in an Adaboost way, which updates layer
weights iteratively.

In this article, eight different graph-structural datasets are
adopted to evaluate the performance of numerous methods,
as listed below.

1) Citeseer1 is a benchmark dataset for literature citation
networks, where nodes represent papers and edges rep-
resent citations between them.

2) CoraFull2 is the larger version of Cora dataset, which is
another well-known citation network. Herein, each node
denotes paper and edge stands for citation. All nodes are
classified according to their topics.

3) Chameleon3 contains node relationships of a large num-
ber of articles on a topic of the English Wikipedia
website, where edges represent the mutual links among
articles.

4) BlogCatalog4 includes a large number of bloggers and
their social relationships from the website. Node features
are extracted from the keywords of user information and
all bloggers are divided into six distinct types.

5) ACM5 is a paper network where each node denotes a
paper. Different from citation networks, edges connect
papers that share the same authors.

6) Flickr6 is a social network that records relationships
among users from an image and video hosting website.
All users are grouped into nine categories on the basis
of their personal interests.

7) UAI7 is a dataset for the test of GCN on community
detection, which is a webpage citation network. Nodes
representing webpages are collected from multiple uni-
versities and each edge denotes the citation.

8) Actor8 is a subgraph of the film–director–actor–writer
network, which only includes the connections of various
actors. Each edge represents the co-occurrence of two
actors on the same Wikipedia page.

A statistical summary of these datasets is demonstrated in
Table I. For fair comparison and avoiding undesired influ-
ence raised by data distribution, we shuffle all datasets and

1https://linqs.soe.ucsc.edu/data
2https://github.com/shchur/gnn-benchmark#datasets
3https://github.com/benedekrozemberczki/MUSAE/
4https://networkrepository.com/soc-BlogCatalog.php
5https://github.com/Jhy1993/HAN
6https://github.com/xhuang31/LANE
7https://github.com/zhumeiqiBUPT/AM-GCN
8https://github.com/CUAI/Non-Homophily-Large-Scale
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TABLE I
BRIEF STATISTICS OF ALL GRAPH DATASETS AND DATA SPLIT MODES

TABLE II
PERFORMANCE (ACCURACY) COMPARISON WITH 20 LABELED SAMPLES PER CLASS AS SUPERVISION SIGNALS, WHERE THE HIGHEST ACCURACY IS

HIGHLIGHTED IN RED. THE LAST COLUMN SHOWS THE AVERAGE RANKS OF THE PERFORMANCE OF DIFFERENT METHODS. FOR MULTILAYER
OR MULTI-ORDER INFORMATION-BASED MODELS, THE OPTIMAL LAYER NUMBERS OR ORDERS ARE RECORDED IN BRACKETS

randomly select 20 labeled samples per class for training,
500 samples for validation, and 1000 samples for testing.

To provide a fair test bed for all compared methods, we list
some hyperparameters in experiments. Learning rates of these
methods are fixed as 0.01 or 0.005, which are preferred to
be smaller when more network layers are utilized. For all
GNN-based methods, we fix the number of hidden units at
each layer as 128 or 16. Other method-specific hyperparame-
ters are fixed as their settings in original papers.

As for the proposed AGNN, we also apply the same hidden
layers as compared methods. The learning rates are also
selected from 0.01 and 0.005. In general, a deeper AGNN
requires a smaller learning rate, and we adopt learning rate
adaptation via decreasing it when there is no loss drop for a
period of training epochs. The Adam optimizer is adopted and
the weight decay is fixed as 5 × 10−4. The activation function
σ(·) is tanh(·) for weak classifiers while ReLU(·) for GCL.
As for the thresholds in the MSReLU function of GEL, we fix
them as θ1 = 0.02 and θ2 = 0.04. For the Adaboost strategy,
the tiny value in (29) is fixed as 10−4.

B. Experimental Results
1) Performance Comparison: First of all, we compare

the performance of the proposed AGNN with all selected
approaches. Table II exhibits the semi-supervised classifica-
tion accuracy on eight datasets. In pursuit of conducting the
ablation study and validating the effectiveness of the designed

network structure, we further examine the performance of
AGNN without the Adaboost framework (dubbed AGNN
w/o AdaBoost), which does not aggregate embeddings of all
network layers but directly outputs predictions of the final
GEL. Because multilayer or multi-order information-based
models aim to improve GCN via mining information from
deep layers, we record the highest accuracy of these models
and the corresponding numbers of layers. The optimal numbers
of layers or orders of neighbors are shown in brackets. We run
all experiments ten times and record the average accuracy.

To validate the statistical significance of the experimental
results, we follow [12] and adopt Friedman test. The average
ranks of all compared models are recorded in the last column
of Table II, on the basis of which we obtain the Friedman
testing score FF = 10.57. With 15 compared models and
eight test datasets, the critical value is 1.794 for α = 0.05,
which indicates that FF is higher than the critical value. Thus,
we can reject the null hypothesis, which points out that the
performance of all compared methods is significantly different
with a confidence level at 95%.

From experimental results, we draw the following conclu-
sions. First, the experimental results indicate that the proposed
AGNN attains encouraging performance and outperforms the
other methods by a considerable margin on most datasets.
Second, it can be observed that AGNN obtains the opti-
mal classification accuracy with more layers. In most cases,
AGNN achieves the best performance with more than 6 layers.
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TABLE III
ACCURACY COMPARISON (GCN, SGC, CLUSTERGCN, SSGC, ADAGCN, AND AGNN) WITH VARIOUS NUMBERS OF LAYERS ON CHAMELEON,

CORAFULL, FLICKR AND UAI DATASETS. THE OPTIMAL NUMBERS OF LAYERS FOR EACH METHOD ARE HIGHLIGHTED WITH “*,” AND THE
BEST PERFORMANCE OF DIFFERENT METHODS WITH THE SAME NUMBER OF LAYERS IS HIGHLIGHTED IN RED

Although other compared methods sometimes also achieve
better performance with more layers, two or four layers are
still the best choice for most datasets. Last but not least,
AGNN w/o Adaboost obtains competitive classification results
and sometimes gets higher accuracy with over ten layers
(Flickr, UAI, and Actor datasets). This phenomenon indicates
that AGNN w/o Adaboost guarantees the discrimination of
node embeddings and the reliability of deep layers. From the
ablation study, we find that AGNN performs satisfactorily
compared with AGNN w/o Adaboost, which indicates the
effectiveness of the proposed improved Adaboost. In addition,
the experimental results point out that the optimal layer num-
bers of AGNN are not always higher than that of AGNN w/o
Adaboost. This may be owing to the fact that the aggregation
process enables the model to obtain competitive accuracy with
fewer layers. Besides, deep-layer models do not always mine
more information on some datasets, which depends on the
topological structure of datasets. However, it is significant that
AGNN obtains higher accuracy with more layers on some

datasets, especially on Chameleon and ACM. In a nutshell,
these observations reveal that the performance leading of
AGNN is significant with larger numbers of layers.

2) Performance With Deep Layers: Because the proposed
AGNN aims to tackle the over-smoothing issue and extract
more distinctive characteristics with deep layers, we further
conduct comparing experiments on some multilayer or multi-
order information-based GCN methods to explore accuracy
trends with varying numbers of layers.

Table III demonstrates the classification accuracy of selected
methods with 20 labeled nodes for each class, from which we
have the following observation. As most existing works have
analyzed, GCN encounters a dramatic accuracy plunge with
over two GCLs on all tested datasets. In contrast, the perfor-
mance decline of other compared methods is not as severe
as GCN, and some of them even gain marginal performance
improvement as the number of layers rises. Nevertheless,
several compared approaches still attain the highest accuracy
with a two-layer architecture, and sometimes performance
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Fig. 4. Performance of baselines and the proposed AGNN with
2/4/8/16/32/64 layers. (a) CoraFull. (b) BlogCatalog. (c) Flickr. (d) UAI.

may dwindle as the numbers of layers are larger. In general,
AdaGCN which also integrates multi-hop node embeddings
behaves favorably on most datasets. Nonetheless, as we have
discussed, it still suffers from indistinguishable node features
from deep layers on some datasets (e.g., BlogCatalog), owing
to which deep AdaGCN leads to unsatisfactory performance.
We can discover that AGNN achieves competitive performance
with fewer layers, and often outperforms other models with
more stacked layers. Above all, the proposed model maintains
accuracy at a high level with more layers, and a suitable mul-
tilayer AGNN is helpful to exploring representative high-order
node features. As for AGNN w/o Adaboost, although it does
not always outperform other models, it succeeds in lessening
the negative influence of over-smoothing compared with other
models and performs satisfactorily on all tested datasets.
We also visualize the performance trends of compared methods
in Fig. 4 with more layers (32 and 64 layers), which intuitively
shows the ability of compared models to overcome over-
smoothing. AGNN generally performs the best with deeper
layers. We find that AGNN also gains marginal improvement
or keeps stable with 32/64 layers, which indicates that it
gets rid of over-smoothing. Generally, AGNN with no more
than 20 layers can achieve the optimal accuracy, as recorded
in Table II. In conclusion, these experimental results point
out that the proposed AGNN has a powerful ability to mine
underlying node embeddings with a deep network architecture.

3) Weak Classifier Weight Distribution: In this section,
we explore the assigned weights of weak classifiers in the
proposed method with varying numbers of layers, as shown
in Fig. 5. The weight assignments demonstrate that shallow
layers account for a significant portion of final predicted
results, indicating that classification problems of most nodes
can be effectively solved by extracting representations of one
or two hops of neighbors. In general, the top four layers
(top two blocks) of AGNN play the most critical role in the

TABLE IV
IMPACT OF IDENTITY FUNCTION (IF), ST, RELU, AND MSRELU IN GEL,

WHERE θ = 0.02 (ST), θ1 = 0.02, AND θ2 = 0.04 (MSRELU). LAYER
NUMBERS ARE FIXED AS 4

final prediction, and the rest layers complement the predic-
tion with more high-order information. Fig. 5 reveals that
AGNN achieves the best performance with eight layers on
both two selected datasets, indicating that multilayer models
are essential for improving accuracy via exploring remote
neighbors. Although Fig. 5 shows that AGNN with more
than eight layers is not the optimal selection, the improved
Adaboost can maintain the classification accuracy of extremely
deep networks by assigning tiny weights to deep layers, if most
nodes have been correctly classified through shallow layers.
In a word, a multilayer architecture often benefits the embed-
ding learning, and AGNN attempts to leverage high-order
information at the best.

4) Model Analysis: In this section, we further analyze the
proposed model. First, the impact of hyperparameters used
in AGNN is discussed. The accuracy changes with respect
to λ and ρ on all datasets are demonstrated in Fig. 6, from
which we find that the performance of AGNN fluctuates
marginally and a suitable choice of two parameters is cru-
cial on most datasets. Overall, AGNN is robust to varied
hyperparameters on Citeseer and ACM datasets. Although the
optimal selections of hyperparameters differ on other datasets,
small values of λ and ρ often lead to undesired performance,
especially on CoraFull, Chameleon, UAI, and BlogCatalog
datasets. In our previous experiments, we select the optimal
combination of these two hyperparameters to obtain better
experimental results.

Furthermore, we validate the effectiveness of the designed
activation function MSReLU in GEL, as exhibited in Table IV.
All parameter settings except those in compared activation
functions are the same. We also evaluate the performance of
AGNN with identify function and ReLU function. It is noted
that ReLU only preserves nonzero entries in the matrix. Exper-
imental results indicate that MSReLU function succeeds in
promoting classification accuracy compared with taking other
functions as activation functions, attributed to the ability of
making sparse outputs closer to original features. Sometimes,
AGNN with ReLU encounters severe performance decline
(e.g., Flickr and UAI datasets). This is because it ignores
negative entries in the feature matrix, which often results in
the information loss. In a word, these observations suggest
that a suitable MSReLU function benefits the learning of more
accurate and robust node embeddings.

5) Convergence Analysis: Convergence curves of the pro-
posed AGNN on BlogCatalog, Flickr, Actor, and Chameleon
datasets are demonstrated in Fig. 7. These curves indicate
that loss values of AGNN drop as the number of iterations
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Fig. 5. Weight distribution of AGNN with 4/8/12/16 layers for each weak classifier on CoraFull and UAI datasets. (a) CoraFull. (b) UAI.

Fig. 6. Parameter sensitivity of AGNN with respect to λ and ρ on various datasets. (a) Citeseer. (b) CoraFull. (c) Chameleon. (d) BlogCatalog. (e) ACM.
(f) Flickr. (g) UAI. (h) Actor.

Fig. 7. Training convergence curves of AGNN with varying numbers of layers ranging in {4, 8, . . . , 20} on BlogCatalog, Flickr, Actor, and Chameleon
datasets. (a) BlogCatalog. (b) Flickr. (c) Actor. (d) Chameleon.

increases and are finally convergent. Although loss values may
sometimes fluctuate, the overall trends of curves are suggestive
of their convergence. The fluctuation during training is caused

by the Adaboost strategy that reassigns sample weights at each
iteration. Nevertheless, loss values are stable and converge
eventually. The figure also shows that AGNN with shallow
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layers generally converges more quickly than that with deep
layers, due to the larger solution space caused by more train-
able parameters. Overall, AGNN with all numbers of layers
leads to similar convergent points. However, AGNN with
deeper layers generally reaches lower values of cross-entropy,
indicating the ability of exploring multi-hop embeddings. It is
noteworthy that AGNN with deep layers does not always
correspond to better convergence, attributed to the various data
distributions of different datasets.

V. CONCLUSION

In this article, we proposed an AGNN to improve the
performance of GCN in terms of semi-supervised node clas-
sification tasks, which coped with the over-smoothing issue
that occurred in most GCN-based models. We first reviewed
the concept of GCN and validated that it was an approx-
imation of a graph-regularized optimization problem. Next,
we elaborated on the proposed GEL, which was derived from
another graph-regularized optimization objective formulating
the transformation from the original feature space to the
intermediate graph embedding space at each layer. There-
fore, GEL allowed the model to carry low-order information
from the input to deep layers. Theoretically, the proposed
AGNN alternately propagated node information on the basis
of two graph-constrained problems. Furthermore, an improved
Adaboost strategy was leveraged to integrate hidden graph
representations from all layers. Due to more reliable and
distinguishable node embeddings learned from GCL and GEL,
this strategy could obtain more accurate predictions. Extensive
experiments validated that the proposed method succeeded in
promoting the performance of GCN with deeper layers. In the
future, we will devote ourselves into further investigation of
multilayer GCN with techniques such as attention mechanism
and residual networks.
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